163,117 research outputs found

    Non-Linear Phase-Shifting of Haar Wavelets for Run-Time All-Frequency Lighting

    Full text link
    This paper focuses on real-time all-frequency image-based rendering using an innovative solution for run-time computation of light transport. The approach is based on new results derived for non-linear phase shifting in the Haar wavelet domain. Although image-based methods for real-time rendering of dynamic glossy objects have been proposed, they do not truly scale to all possible frequencies and high sampling rates without trading storage, glossiness, or computational time, while varying both lighting and viewpoint. This is due to the fact that current approaches are limited to precomputed radiance transfer (PRT), which is prohibitively expensive in terms of memory requirements and real-time rendering when both varying light and viewpoint changes are required together with high sampling rates for high frequency lighting of glossy material. On the other hand, current methods cannot handle object rotation, which is one of the paramount issues for all PRT methods using wavelets. This latter problem arises because the precomputed data are defined in a global coordinate system and encoded in the wavelet domain, while the object is rotated in a local coordinate system. At the root of all the above problems is the lack of efficient run-time solution to the nontrivial problem of rotating wavelets (a non-linear phase-shift), which we solve in this paper

    Volumetric Super-Resolution of Multispectral Data

    Full text link
    Most multispectral remote sensors (e.g. QuickBird, IKONOS, and Landsat 7 ETM+) provide low-spatial high-spectral resolution multispectral (MS) or high-spatial low-spectral resolution panchromatic (PAN) images, separately. In order to reconstruct a high-spatial/high-spectral resolution multispectral image volume, either the information in MS and PAN images are fused (i.e. pansharpening) or super-resolution reconstruction (SRR) is used with only MS images captured on different dates. Existing methods do not utilize temporal information of MS and high spatial resolution of PAN images together to improve the resolution. In this paper, we propose a multiframe SRR algorithm using pansharpened MS images, taking advantage of both temporal and spatial information available in multispectral imagery, in order to exceed spatial resolution of given PAN images. We first apply pansharpening to a set of multispectral images and their corresponding PAN images captured on different dates. Then, we use the pansharpened multispectral images as input to the proposed wavelet-based multiframe SRR method to yield full volumetric SRR. The proposed SRR method is obtained by deriving the subband relations between multitemporal MS volumes. We demonstrate the results on Landsat 7 ETM+ images comparing our method to conventional techniques.Comment: arXiv admin note: text overlap with arXiv:1705.0125

    Single Image Action Recognition by Predicting Space-Time Saliency

    Full text link
    We propose a novel approach based on deep Convolutional Neural Networks (CNN) to recognize human actions in still images by predicting the future motion, and detecting the shape and location of the salient parts of the image. We make the following major contributions to this important area of research: (i) We use the predicted future motion in the static image (Walker et al., 2015) as a means of compensating for the missing temporal information, while using the saliency map to represent the the spatial information in the form of location and shape of what is predicted as significant. (ii) We cast action classification in static images as a domain adaptation problem by transfer learning. We first map the input static image to a new domain that we refer to as the Predicted Optical Flow-Saliency Map domain (POF-SM), and then fine-tune the layers of a deep CNN model trained on classifying the ImageNet dataset to perform action classification in the POF-SM domain. (iii) We tested our method on the popular Willow dataset. But unlike existing methods, we also tested on a more realistic and challenging dataset of over 2M still images that we collected and labeled by taking random frames from the UCF-101 video dataset. We call our dataset the UCF Still Image dataset or UCFSI-101 in short. Our results outperform the state of the art

    An Invariant Model of the Significance of Different Body Parts in Recognizing Different Actions

    Full text link
    In this paper, we show that different body parts do not play equally important roles in recognizing a human action in video data. We investigate to what extent a body part plays a role in recognition of different actions and hence propose a generic method of assigning weights to different body points. The approach is inspired by the strong evidence in the applied perception community that humans perform recognition in a foveated manner, that is they recognize events or objects by only focusing on visually significant aspects. An important contribution of our method is that the computation of the weights assigned to body parts is invariant to viewing directions and camera parameters in the input data. We have performed extensive experiments to validate the proposed approach and demonstrate its significance. In particular, results show that considerable improvement in performance is gained by taking into account the relative importance of different body parts as defined by our approach.Comment: arXiv admin note: substantial text overlap with arXiv:1705.04641, arXiv:1705.05741, arXiv:1705.0443

    View-Invariant Recognition of Action Style Self-Dissimilarity

    Full text link
    Self-similarity was recently introduced as a measure of inter-class congruence for classification of actions. Herein, we investigate the dual problem of intra-class dissimilarity for classification of action styles. We introduce self-dissimilarity matrices that discriminate between same actions performed by different subjects regardless of viewing direction and camera parameters. We investigate two frameworks using these invariant style dissimilarity measures based on Principal Component Analysis (PCA) and Fisher Discriminant Analysis (FDA). Extensive experiments performed on IXMAS dataset indicate remarkably good discriminant characteristics for the proposed invariant measures for gender recognition from video data

    Visual Affordance and Function Understanding: A Survey

    Full text link
    Nowadays, robots are dominating the manufacturing, entertainment and healthcare industries. Robot vision aims to equip robots with the ability to discover information, understand it and interact with the environment. These capabilities require an agent to effectively understand object affordances and functionalities in complex visual domains. In this literature survey, we first focus on Visual affordances and summarize the state of the art as well as open problems and research gaps. Specifically, we discuss sub-problems such as affordance detection, categorization, segmentation and high-level reasoning. Furthermore, we cover functional scene understanding and the prevalent functional descriptors used in the literature. The survey also provides necessary background to the problem, sheds light on its significance and highlights the existing challenges for affordance and functionality learning.Comment: 26 pages, 22 image

    Classifying Traffic Scenes Using The GIST Image Descriptor

    Full text link
    This paper investigates classification of traffic scenes in a very low bandwidth scenario, where an image should be coded by a small number of features. We introduce a novel dataset, called the FM1 dataset, consisting of 5615 images of eight different traffic scenes: open highway, open road, settlement, tunnel, tunnel exit, toll booth, heavy traffic and the overpass. We evaluate the suitability of the GIST descriptor as a representation of these images, first by exploring the descriptor space using PCA and k-means clustering, and then by using an SVM classifier and recording its 10-fold cross-validation performance on the introduced FM1 dataset. The obtained recognition rates are very encouraging, indicating that the use of the GIST descriptor alone could be sufficiently descriptive even when very high performance is required.Comment: Part of the Proceedings of the Croatian Computer Vision Workshop, CCVW 2013, Year

    High-Resolution Representations for Labeling Pixels and Regions

    Full text link
    High-resolution representation learning plays an essential role in many vision problems, e.g., pose estimation and semantic segmentation. The high-resolution network (HRNet)~\cite{SunXLW19}, recently developed for human pose estimation, maintains high-resolution representations through the whole process by connecting high-to-low resolution convolutions in \emph{parallel} and produces strong high-resolution representations by repeatedly conducting fusions across parallel convolutions. In this paper, we conduct a further study on high-resolution representations by introducing a simple yet effective modification and apply it to a wide range of vision tasks. We augment the high-resolution representation by aggregating the (upsampled) representations from all the parallel convolutions rather than only the representation from the high-resolution convolution as done in~\cite{SunXLW19}. This simple modification leads to stronger representations, evidenced by superior results. We show top results in semantic segmentation on Cityscapes, LIP, and PASCAL Context, and facial landmark detection on AFLW, COFW, 300300W, and WFLW. In addition, we build a multi-level representation from the high-resolution representation and apply it to the Faster R-CNN object detection framework and the extended frameworks. The proposed approach achieves superior results to existing single-model networks on COCO object detection. The code and models have been publicly available at \url{https://github.com/HRNet}

    A Comprehensive Survey of Deep Learning for Image Captioning

    Full text link
    Generating a description of an image is called image captioning. Image captioning requires to recognize the important objects, their attributes and their relationships in an image. It also needs to generate syntactically and semantically correct sentences. Deep learning-based techniques are capable of handling the complexities and challenges of image captioning. In this survey paper, we aim to present a comprehensive review of existing deep learning-based image captioning techniques. We discuss the foundation of the techniques to analyze their performances, strengths and limitations. We also discuss the datasets and the evaluation metrics popularly used in deep learning based automatic image captioning.Comment: 36 Pages, Accepted as a Journal Paper in ACM Computing Surveys (October 2018

    Human Action Recognition and Prediction: A Survey

    Full text link
    Derived from rapid advances in computer vision and machine learning, video analysis tasks have been moving from inferring the present state to predicting the future state. Vision-based action recognition and prediction from videos are such tasks, where action recognition is to infer human actions (present state) based upon complete action executions, and action prediction to predict human actions (future state) based upon incomplete action executions. These two tasks have become particularly prevalent topics recently because of their explosively emerging real-world applications, such as visual surveillance, autonomous driving vehicle, entertainment, and video retrieval, etc. Many attempts have been devoted in the last a few decades in order to build a robust and effective framework for action recognition and prediction. In this paper, we survey the complete state-of-the-art techniques in the action recognition and prediction. Existing models, popular algorithms, technical difficulties, popular action databases, evaluation protocols, and promising future directions are also provided with systematic discussions
    • …
    corecore