25 research outputs found

    Indoor Outdoor Scene Classification in Digital Images

    Get PDF
    In this paper, we present a method to classify real-world digital images into indoor and outdoor scenes. Indoor class consists of four groups: bedroom, kitchen, laboratory and library. Outdoor class consists of four groups: landscape, roads, buildings and garden. Application considers real-time system and has a dedicated data-set. Input images are pre-processed and converted into gray-scale and is re-sized to “128x128” dimensions. Pre-processed images are sent to “Gabor filters”, which pre-computes filter transfer functions, which are performed on Fourier domain. The processed signal is finally sent to GIST feature extraction and the images are classified using “kNN classifier”. Most of the techniques have been based on the use of texture and color space features. As of date, we have been able to achieve 80% accuracy with respect to image classification

    A Novel Technique of Error Concealment Method Selection in Texture Images Using ALBP Classifier

    Get PDF
    There are many error concealment techniques for image processing. In the paper, the focus is on restoration of image with missing blocks or macroblocks. Different methods can be optimal for different kinds of images. In recent years, great attention was dedicated to textures, and specific methods were developed for their processing. Many of them use classification of textures as an integral part. It is also of an advantage to know the texture classification to select the best restoration technique. In the paper, selection based on texture classification with advanced local binary patterns and spatial distribution of dominant patterns is proposed. It is shown, that for classified textures, optimal error concealment method can be selected from predefined ones, resulting then in better restoration. For testing, three methods of extrapolation and texture synthesis were used

    MultiFingerBubble: A 3D Bubble Cursor Variation for Dense Environments

    Get PDF
    In this work, we propose MultiFingerBubble, a new variation of the 3D Bubble Cursor. The 3D Bubble Cursor is sensitive to distractors in dense environments: the volume selection resizes to snap-to nearby targets. To prevent the cursor to constantly re-snap to neighboring targets, MultiFingerBubble includes multiple targets in the volume selection, and hence increases the targets effective width. Each target in the volume selection is associated with a specific finger. Users can then select a target by flexing its corresponding finger. We report on a controlled in-lab experiment to explore various design options regarding the number of fingers to use, and the target-to-finger mapping and its visualization. Our study results suggest that MultiFingerBubble is best used with three fingers and colored lines to reveal the mapping between targets and fingers

    FARSEC: A Reproducible Framework for Automatic Real-Time Vehicle Speed Estimation Using Traffic Cameras

    Full text link
    Estimating the speed of vehicles using traffic cameras is a crucial task for traffic surveillance and management, enabling more optimal traffic flow, improved road safety, and lower environmental impact. Transportation-dependent systems, such as for navigation and logistics, have great potential to benefit from reliable speed estimation. While there is prior research in this area reporting competitive accuracy levels, their solutions lack reproducibility and robustness across different datasets. To address this, we provide a novel framework for automatic real-time vehicle speed calculation, which copes with more diverse data from publicly available traffic cameras to achieve greater robustness. Our model employs novel techniques to estimate the length of road segments via depth map prediction. Additionally, our framework is capable of handling realistic conditions such as camera movements and different video stream inputs automatically. We compare our model to three well-known models in the field using their benchmark datasets. While our model does not set a new state of the art regarding prediction performance, the results are competitive on realistic CCTV videos. At the same time, our end-to-end pipeline offers more consistent results, an easier implementation, and better compatibility. Its modular structure facilitates reproducibility and future improvements

    Métodos computacionales para estudio de la anemia drepanocítica

    Get PDF
    El procesamiento de imágenes digitales y la visión por computador son ampliamente utilizados en medicina actualmente y son de gran interés las propuestas de nuevos métodos de análisis automatizado de imágenes digitales o mejorar la eficiencia de los existentes. En este trabajo se desarrollaron métodos nuevos para estudiar computacionalmente a través de imágenes de muestras de sangre la drepanocitosis, dolencia con alta incidencia mundial y en Cuba, sobre todo en la región oriental. Se propusieron nuevos métodos de análisis de formas, obtenidos a partir de resultados clásicos de geometría integral y nuevas propuestas de visión por computador para evaluar trastornos neurofisiológicos asociados a través del estudio de las expresiones faciales del paciente. La validación estadística realizada comprobó la superioridad de estos métodos sobre otros, se determinó que son válidos para ser introducidos en software de apoyo para mejorar la calidad de la atención médica.Palabras clave: análisis de forma, análisis de expresiones faciales, drepanocitosis.</p

    Low Cost Eye Tracking: The Current Panorama

    Get PDF
    Despite the availability of accurate, commercial gaze tracker devices working with infrared (IR) technology, visible light gaze tracking constitutes an interesting alternative by allowing scalability and removing hardware requirements. Over the last years, this field has seen examples of research showing performance comparable to the IR alternatives. In this work, we survey the previous work on remote, visible light gaze trackers and analyze the explored techniques from various perspectives such as calibration strategies, head pose invariance, and gaze estimation techniques. We also provide information on related aspects of research such as public datasets to test against, open source projects to build upon, and gaze tracking services to directly use in applications. With all this information, we aim to provide the contemporary and future researchers with a map detailing previously explored ideas and the required tools

    Efficient video collection association using geometry-aware Bag-of-Iconics representations

    Get PDF
    Abstract Recent years have witnessed the dramatic evolution in visual data volume and processing capabilities. For example, technical advances have enabled 3D modeling from large-scale crowdsourced photo collections. Compared to static image datasets, exploration and exploitation of Internet video collections are still largely unsolved. To address this challenge, we first propose to represent video contents using a histogram representation of iconic imagery attained from relevant visual datasets. We then develop a data-driven framework for a fully unsupervised extraction of such representations. Our novel Bag-of-Iconics (BoI) representation efficiently analyzes individual videos within a large-scale video collection. We demonstrate our proposed BoI representation with two novel applications: (1) finding video sequences connecting adjacent landmarks and aligning reconstructed 3D models and (2) retrieving geometrically relevant clips from video collections. Results on crowdsourced datasets illustrate the efficiency and effectiveness of our proposed Bag-of-Iconics representation

    Low Cost Eye Tracking : The Current Panorama

    Get PDF
    Altres ajuts: Consolider 2010 MIPRCV, Universitat Autonoma de Barcelona i Google Faculty AwardDespite the availability of accurate, commercial gaze tracker devices working with infrared (IR) technology, visible light gaze tracking constitutes an interesting alternative by allowing scalability and removing hardware requirements. Over the last years, this field has seen examples of research showing performance comparable to the IR alternatives. In this work, we survey the previous work on remote, visible light gaze trackers and analyze the explored techniques from various perspectives such as calibration strategies, head pose invariance, and gaze estimation techniques. We also provide information on related aspects of research such as public datasets to test against, open source projects to build upon, and gaze tracking services to directly use in applications. With all this information, we aim to provide the contemporary and future researchers with a map detailing previously explored ideas and the required tools

    Verbesserung der Störsicherheit bei der Mimikanalyse in mono- und binokularen Farbbildsequenzen durch Auswertung geometrischer und dynamischer Merkmale

    Get PDF
    Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2010Robert Nies
    corecore