9,270 research outputs found

    The building and development of the american electrical manufacturing industry and its top two companies-General Electric & Westinghouse

    Get PDF
    The paper describes the development of the American electrical manufacturing industry and of its top two companies, General Electric and Westinghouse, from the early 1870s to the late 1990s.IndisponĂ­vel

    Retrofitting a high-rise residential building to reduce energy use by a factor of 10

    Get PDF
    This thesis details the ways in which energy is consumed in an existing Canadian high-rise apartment building and outlines a strategy to reduce its consumption of grid purchased energy by 90%. Grid purchased energy is targeted because the building is located in Saskatchewan where energy is predominantly generated from fossil fuels that release greenhouse gas emissions into the environment. Greenhouse gas emissions are targeted because of the growing consensus that human activities are the cause of recent global climate destabilization and the general trend towards global warming. Energy consumption is also a concern because of anticipated resource shortages resulting from increases in both global population and average per capita consumption. Many researchers are beginning to claim that a factor 10 reduction in energy use by industrialized nations will be required in order for our civilization to be sustainable.The building that was studied is an 11 story seniors high-rise with a total above ground floor area of 8,351 m2. It was constructed in 1985, in Saskatoon, SK, and it is an average user of energy for this region of the world and for a building of its size and type. Numerous field measurements were taken in the building, both during this study and previously by the Saskatchewan Research Council. These measurements were used to create a computer model of the building using EE4. After the computer model of the building was created different energy saving retrofits were simulated and compared. Over 40 retrofits are presented and together they reduce the annual grid purchased energy of the building from 360 kWh/m2 (based on above ground floor area) to 36 kWh/m2, a factor 10 reduction. Natural gas consumption was reduced by approximately 94% and grid purchased electrical consumption was reduced by approximately 81%. As a result of these energy savings, a factor 6.6 reduction (85%) in greenhouse gas emissions was also achieved. The goal of factor 10 could not be achieved only through energy conservation and the final design includes two solar water heating systems and grid-connected photovoltaic panels. These systems were modeled using RETScreen project analysis tools.Capital cost estimates and simple payback periods for each retrofit are also presented. The total cost to retrofit the building is estimated to be 3,123,000andtheresultingutilitysavingsfromtheretrofitsareapproximately3,123,000 and the resulting utility savings from the retrofits are approximately 150,000 per year. This is a factor 6.0 reduction (83%) in annual utility costs in comparison to the base building. While the typical response to proposing a “green” building is that financial sacrifices are required, there is also research available stating that operating in a more sustainable manner is economically advantageous. This research project adds to the “green building economics” debate by detailing savings and costs for each retrofit and ranking each retrofit that was proposed. The most economically advantageous mechanical system that was added to the building was energy recovery in the outdoor ventilation air. It should also be noted that there was already a glycol run-around heat recovery system in the building and even greater savings would have been obtained from installing the energy recovery system had this not been the case.While the goal of factor 10 required economically unjustifiable retrofits to be proposed, the majority of the retrofits had simple payback periods of less than 20 years (30 out of 49). This research shows that certain retrofits have highly desirable rates of return and that when making decisions regarding investing in auditing a building, improving energy efficiency, promoting conservation, or utilizing renewable energy technologies, maintaining the status quo may be economically detrimental. This would be especially true in the case of new building construction

    The Powered Generation: Canadians, Electricity, and Everyday Life

    Get PDF
    Most studies of electricity in Canada have examined the process of electrification from a business or political perspective, emphasizing the role of private and public institutions in electrifying the country. Such approaches neglect the primary targets of the electrification process: Canadians as consumers of electricity. This dissertation analyzes electrification as a social phenomenon. Drawing from archival sources in Canada and the United States, as well as newspapers, magazines, and government documents, the author addresses technological debates in Canadian history and investigates the relationship between technology and society. The broader themes in this dissertation include: urban electrification, rural electrification, domestic electrification and the changing role of electricity in medicine. These areas of electrification in Canada indicate that while electricity may have had some transformative effect on Canadian society, it stopped short of revolutionizing people’s lives; electricity simply made it easier — for those who could afford it — to accomplish the same tasks (at home, on the farm, and in the city) people had been performing for hundreds of years. Canadians adopted new electrical technologies to suit traditional needs, and evidence suggests that established cultural practices informed the path of electrical development in Canada. This dissertation is the first study of the social implications of electrification in Canada on a nationwide scale, and a step toward understanding the broader social implications of technological change for Canadians

    The G0 Experiment: Apparatus for Parity-Violating Electron Scattering Measurements at Forward and Backward Angles

    Full text link
    In the G0 experiment, performed at Jefferson Lab, the parity-violating elastic scattering of electrons from protons and quasi-elastic scattering from deuterons is measured in order to determine the neutral weak currents of the nucleon. Asymmetries as small as 1 part per million in the scattering of a polarized electron beam are determined using a dedicated apparatus. It consists of specialized beam-monitoring and control systems, a cryogenic hydrogen (or deuterium) target, and a superconducting, toroidal magnetic spectrometer equipped with plastic scintillation and aerogel Cerenkov detectors, as well as fast readout electronics for the measurement of individual events. The overall design and performance of this experimental system is discussed.Comment: Submitted to Nuclear Instruments and Method

    Retrofitting a high-rise residential building to reduce energy use by a factor of 10

    Get PDF
    This thesis details the ways in which energy is consumed in an existing Canadian high-rise apartment building and outlines a strategy to reduce its consumption of grid purchased energy by 90%. Grid purchased energy is targeted because the building is located in Saskatchewan where energy is predominantly generated from fossil fuels that release greenhouse gas emissions into the environment. Greenhouse gas emissions are targeted because of the growing consensus that human activities are the cause of recent global climate destabilization and the general trend towards global warming. Energy consumption is also a concern because of anticipated resource shortages resulting from increases in both global population and average per capita consumption. Many researchers are beginning to claim that a factor 10 reduction in energy use by industrialized nations will be required in order for our civilization to be sustainable.The building that was studied is an 11 story seniors high-rise with a total above ground floor area of 8,351 m2. It was constructed in 1985, in Saskatoon, SK, and it is an average user of energy for this region of the world and for a building of its size and type. Numerous field measurements were taken in the building, both during this study and previously by the Saskatchewan Research Council. These measurements were used to create a computer model of the building using EE4. After the computer model of the building was created different energy saving retrofits were simulated and compared. Over 40 retrofits are presented and together they reduce the annual grid purchased energy of the building from 360 kWh/m2 (based on above ground floor area) to 36 kWh/m2, a factor 10 reduction. Natural gas consumption was reduced by approximately 94% and grid purchased electrical consumption was reduced by approximately 81%. As a result of these energy savings, a factor 6.6 reduction (85%) in greenhouse gas emissions was also achieved. The goal of factor 10 could not be achieved only through energy conservation and the final design includes two solar water heating systems and grid-connected photovoltaic panels. These systems were modeled using RETScreen project analysis tools.Capital cost estimates and simple payback periods for each retrofit are also presented. The total cost to retrofit the building is estimated to be 3,123,000andtheresultingutilitysavingsfromtheretrofitsareapproximately3,123,000 and the resulting utility savings from the retrofits are approximately 150,000 per year. This is a factor 6.0 reduction (83%) in annual utility costs in comparison to the base building. While the typical response to proposing a “green” building is that financial sacrifices are required, there is also research available stating that operating in a more sustainable manner is economically advantageous. This research project adds to the “green building economics” debate by detailing savings and costs for each retrofit and ranking each retrofit that was proposed. The most economically advantageous mechanical system that was added to the building was energy recovery in the outdoor ventilation air. It should also be noted that there was already a glycol run-around heat recovery system in the building and even greater savings would have been obtained from installing the energy recovery system had this not been the case.While the goal of factor 10 required economically unjustifiable retrofits to be proposed, the majority of the retrofits had simple payback periods of less than 20 years (30 out of 49). This research shows that certain retrofits have highly desirable rates of return and that when making decisions regarding investing in auditing a building, improving energy efficiency, promoting conservation, or utilizing renewable energy technologies, maintaining the status quo may be economically detrimental. This would be especially true in the case of new building construction

    Workshop on Applications of Phase Diagrams in Metallurgy and Ceramics

    Get PDF
    A workshop was held to assess the current national and international status of phase diagram determinations and evaluations for alloys, ceramics, and semiconductors; to determine the needs and priorities, especially technological, for phase diagram determinations and evaluations; and to estimate the resources being used and potentially available for phase diagram evaluation. Highlights of the workshop, description of a new poster board design used in the poster sessions, lists of attendees and demonstrations, the program, and descriptions of the presentations are included

    Expert system for energy optimization of buildings using sustainable and resilient strategies

    Get PDF
    An expert system is developed using the science of heuristics to better model energy usage in existing commercial buildings and to predict future improvements more accurately. The software performs an initial audit analysis of all the major building systems including building envelope, HVAC, lighting, office equipment and appliances, water and hot water, and waste handling. A novel feature of the expert system is that it analyzes energy flow within the building more interactively and cohesively, as opposed to looking at each system individually as do most energy analysis tools on the current market. Both forward and backward chaining strategies are used to accomplish this. During the auditing process, the software queries user habits and system controls to understand occupant behavior, which can have a significant effect on actual energy usage. Responses are analyzed using Bayesian functions to develop heuristic factors, which are then applied to the results of the audit analysis. This ensures that energy usage is modeled as it is used and operated, as opposed to how it was designed, which can differ significantly. Once the heuristic factors are applied to audit results, the expert system performs a synchronization step with a forcing function to converge the calculated energy usage with actual consumption from the utility bills, so that energy efficiency may be optimized in the target building. The software then generates a list of recommended upgrades that are prioritized by cost, ease of implementation, and projected energy savings. Sustainable and resilient strategies are also recommended by the system, since it is becoming increasingly important that a building not only be “green” but also be resilient in the face of a disaster, natural or otherwise. The expert system is validated and calibrated with ten schools selected from the Newark Public Schools District in New Jersey. The test group of K-12 buildings proved ideal in that they all had similar usage but also represented a wide range of building age, size, and construction type. They were also subject to the temperature extremes of the Northeast climate. Although the expert system is calibrated for Newark school system, the data libraries are easily modified to model any number of building types and climates. In general, the model shows very good convergence with actual energy consumption for the ten schools as evidenced by an average synchronization adjustment of -0.9% for electric usage and 0.0% for natural gas. A key finding for the Newark study was the wide range of the heuristic index, which measures how occupant behavior and system controls affect the energy usage within a target building. The heuristic index for the “best” test case is 29%, while for the “worst” test case is 54%, or nearly double. Detail model results show that a well-trained staff and good building management are the most influential factors in reducing the heuristic index and thus energy consumption for a given school. The impacts of factors such as HVAC system type and construction materials on energy efficiency are found to be less significant for this test group. The overall model results suggest that a 17% average reduction in energy usage is achievable by improving building management and custodial staff training, and savings of 10% or more can be realized by implementing modest cost upgrades with rapid payback, such as replacing weather stripping, appliance timers, and filter maintenance

    Get Away Special: The First Ten Years

    Get PDF
    No abstract availabl

    Experiments in Artificial Lightins: Comparative Analysis of Luminative Typologies

    Get PDF
    “Light is not so much something that reveals, as it is itself the revelation.” This statement once made by artist James Turrell articulates the primal idea that light is essential for humans to receive visual information about their surroundings. The amount of light available correlates to the amount of understanding we have of a space. As architects, we are able to alter the built environment not only through the use of form, but also through the manipulation of light. This project aims to explore how changes to architectural lighting can create visual nuances in contrast ratios, uniformity, and illuminance levels, thereby affecting the overall visual experience of a particular space. This will be achieved through the cross-referencing of both qualitative and quantitative data, in the form of an analysis chart, using the same space to act as constant variable. This allows for visual comparison of different lighting solution impacts, as well as provides an understanding of quantitative data in a visual manner. In order to compare the different lamps, a baseline will be set using the IESNA horizontal illuminance targets. This information is then utilized to reference and compare criteria-based light evaluation systems from LEED, BREEAM and HI-CHPS. In particular, comparing and understanding how these systems excel and where they can be improved. The study proposes several guideline alterations that can be made LEED, BREEAM and HI-CHPS to further improve lighting quality in the classroom with respect to illuminance levels, illuminance uniformity, luminance, and visual contrast
    • 

    corecore