1,416 research outputs found

    An evolutionary model for simple ecosystems

    Full text link
    In this review some simple models of asexual populations evolving on smooth landscapes are studied. The basic model is based on a cellular automaton, which is analyzed here in the spatial mean-field limit. Firstly, the evolution on a fixed fitness landscape is considered. The correspondence between the time evolution of the population and equilibrium properties of a statistical mechanics system is investigated, finding the limits for which this mapping holds. The mutational meltdown, Eigen's error threshold and Muller's ratchet phenomena are studied in the framework of a simplified model. Finally, the shape of a quasi-species and the condition of coexistence of multiple species in a static fitness landscape are analyzed. In the second part, these results are applied to the study of the coexistence of quasi-species in the presence of competition, obtaining the conditions for a robust speciation effect in asexual populations.Comment: 36 pages, including 16 figures, to appear in Annual Review of Computational Physics, D. Stauffer (ed.), World Scientific, Singapor

    Meso-scale modeling of reaction-diffusion processes using cellular automata

    Get PDF

    Nonequilibrium Critical Phenomena and Phase Transitions into Absorbing States

    Full text link
    This review addresses recent developments in nonequilibrium statistical physics. Focusing on phase transitions from fluctuating phases into absorbing states, the universality class of directed percolation is investigated in detail. The survey gives a general introduction to various lattice models of directed percolation and studies their scaling properties, field-theoretic aspects, numerical techniques, as well as possible experimental realizations. In addition, several examples of absorbing-state transitions which do not belong to the directed percolation universality class will be discussed. As a closely related technique, we investigate the concept of damage spreading. It is shown that this technique is ambiguous to some extent, making it impossible to define chaotic and regular phases in stochastic nonequilibrium systems. Finally, we discuss various classes of depinning transitions in models for interface growth which are related to phase transitions into absorbing states.Comment: Review article, revised version, LaTeX, 153 pages, 63 encapsulated postscript figure
    • …
    corecore