15,702 research outputs found

    Carbon superatom thin films

    Full text link
    Assembling clusters on surfaces has emerged as a novel way to grow thin films with targeted properties. In particular, it has been proposed from experimental findings that fullerenes deposited on surfaces could give rise to thin films retaining the bonding properties of the incident clusters. However the microscopic structure of such films is still unclear. By performing quantum molecular dynamics simulations, we show that C_28 fullerenes can be deposited on a surface to form a thin film of nearly defect free molecules, which act as carbon superatoms. Our findings help clarify the structure of disordered small fullerene films and also support the recently proposed hyperdiamond model for solid C_28.Comment: 13 pages, RevTeX, 2 figures available as black and white PostScript files; color PostScript and/or gif files available upon reques

    Two-dimensional structure in a generic model of triangular proteins and protein trimers

    Get PDF
    Motivated by the diversity and complexity of two-dimensional crystals formed by triangular proteins and protein trimers, we have investigated the structures and phase behavior of hard-disk trimers. In order to mimic specific binding interactions, each trimer possesses on `attractive' disk which can interact with similar disks on other trimers via an attractive square-well potential. At low density and low temperature, the fluid phase mainly consists of tetramers, pentamers, or hexamers. Hexamers provide the structural motif for a high-density, low-temperature periodic solid phase, but we also identify a metastable periodic structure based on a tetramer motif. At high density there is a transition between orientationally ordered and disordered solid phases. The connections between simulated structures and those of 2D protein crystals -- as seen in electron microscopy -- are briefly discussed.Comment: 7 pages, 6 figure

    Structure and Dynamics of amorphous Silica Surfaces

    Full text link
    We use molecular dynamics computer simulations to study the equilibrium properties of the surface of amorphous silica. Two types of geometries are investigated: i) clusters with different diameters (13.5\AA, 19\AA, and 26.5\AA) and ii) a thin film with thickness 29\AA. We find that the shape of the clusters is independent of temperature and that it becomes more spherical with increasing size. The surface energy is in qualitative agreement with the experimental value for the surface tension. The density distribution function shows a small peak just below the surface, the origin of which is traced back to a local chemical ordering at the surface. Close to the surface the partial radial distribution functions as well as the distributions of the bond-bond angles show features which are not observed in the interior of the systems. By calculating the distribution of the length of the Si-O rings we can show that these additional features are related to the presence of two-membered rings at the surface. The surface density of these structures is around 0.6/nm^2 in good agreement with experimental estimates. From the behavior of the mean-squared displacement at low temperatures we conclude that at the surface the cage of the particles is larger than the one in the bulk. Close to the surface the diffusion constant is somewhat larger than the one in the bulk and with decreasing temperature the relative difference grows. The total vibrational density of states at the surface is similar to the one in the bulk. However, if only the one for the silicon atoms is considered, significant differences are found.Comment: 30 pages of Latex, 16 figure

    Computers and Liquid State Statistical Mechanics

    Full text link
    The advent of electronic computers has revolutionised the application of statistical mechanics to the liquid state. Computers have permitted, for example, the calculation of the phase diagram of water and ice and the folding of proteins. The behaviour of alkanes adsorbed in zeolites, the formation of liquid crystal phases and the process of nucleation. Computer simulations provide, on one hand, new insights into the physical processes in action, and on the other, quantitative results of greater and greater precision. Insights into physical processes facilitate the reductionist agenda of physics, whilst large scale simulations bring out emergent features that are inherent (although far from obvious) in complex systems consisting of many bodies. It is safe to say that computer simulations are now an indispensable tool for both the theorist and the experimentalist, and in the future their usefulness will only increase. This chapter presents a selective review of some of the incredible advances in condensed matter physics that could only have been achieved with the use of computers.Comment: 22 pages, 2 figures. Chapter for a boo

    The role of local structure in dynamical arrest

    Full text link
    Amorphous solids, or glasses, are distinguished from crystalline solids by their lack of long-range structural order. At the level of two-body structural correlations, glassformers show no qualitative change upon vitrifying from a supercooled liquid. Nonetheless the dynamical properties of a glass are so much slower that it appears to take on the properties of a solid. While many theories of the glass transition focus on dynamical quantities, a solid's resistance to flow is often viewed as a consequence of its structure. Here we address the viewpoint that this remains the case for a glass. Recent developments using higher-order measures show a clear emergence of structure upon dynamical arrest in a variety of glass formers and offer the tantalising hope of a structural mechanism for arrest. However a rigorous fundamental identification of such a causal link between structure and arrest remains elusive. We undertake a critical survey of this work in experiments, computer simulation and theory and discuss what might strengthen the link between structure and dynamical arrest. We move on to highlight the relationship between crystallisation and glass-forming ability made possible by this deeper understanding of the structure of the liquid state, and emphasize the potential to design materials with optimal glassforming and crystallisation ability, for applications such as phase-change memory. We then consider aspects of the phenomenology of glassy systems where structural measures have yet to make a large impact, such as polyamorphism (the existence of multiple liquid states), aging (the time-evolution of non-equilibrium materials below their glass transition) and the response of glassy materials to external fields such as shear.Comment: 70 page
    corecore