117 research outputs found

    Computer Simulation of Cellular Patterning Within the Drosophila Pupal Eye

    Get PDF
    We present a computer simulation and associated experimental validation of assembly of glial-like support cells into the interweaving hexagonal lattice that spans the Drosophila pupal eye. This process of cell movements organizes the ommatidial array into a functional pattern. Unlike earlier simulations that focused on the arrangements of cells within individual ommatidia, here we examine the local movements that lead to large-scale organization of the emerging eye field. Simulations based on our experimental observations of cell adhesion, cell death, and cell movement successfully patterned a tracing of an emerging wild-type pupal eye. Surprisingly, altering cell adhesion had only a mild effect on patterning, contradicting our previous hypothesis that the patterning was primarily the result of preferential adhesion between IRM-class surface proteins. Instead, our simulations highlighted the importance of programmed cell death (PCD) as well as a previously unappreciated variable: the expansion of cells' apical surface areas, which promoted rearrangement of neighboring cells. We tested this prediction experimentally by preventing expansion in the apical area of individual cells: patterning was disrupted in a manner predicted by our simulations. Our work demonstrates the value of combining computer simulation with in vivo experiments to uncover novel mechanisms that are perpetuated throughout the eye field. It also demonstrates the utility of the Glazier–Graner–Hogeweg model (GGH) for modeling the links between local cellular interactions and emergent properties of developing epithelia as well as predicting unanticipated results in vivo

    Apoptosis During Cellular Pattern Formation

    Get PDF

    Cadherin-Dependent Cell Morphology in an Epithelium: Constructing a Quantitative Dynamical Model

    Get PDF
    Cells in the Drosophila retina have well-defined morphologies that are attained during tissue morphogenesis. We present a computer simulation of the epithelial tissue in which the global interfacial energy between cells is minimized. Experimental data for both normal cells and mutant cells either lacking or misexpressing the adhesion protein N-cadherin can be explained by a simple model incorporating salient features of morphogenesis that include the timing of N-cadherin expression in cells and its temporal relationship to the remodeling of cell-cell contacts. The simulations reproduce the geometries of wild-type and mutant cells, distinguish features of cadherin dynamics, and emphasize the importance of adhesion protein biogenesis and its timing with respect to cell remodeling. The simulations also indicate that N-cadherin protein is recycled from inactive interfaces to active interfaces, thereby modulating adhesion strengths between cells

    Development of variable and robust brain wiring patterns in the fly visual system

    Get PDF
    Precise generation of synapse-specific neuronal connections are crucial for establishing a robust and functional brain. Neuronal wiring patterns emerge from proper spatiotemporal regulation of axon branching and synapse formation during development. Several neuropsychiatric and neurodevelopmental disorders exhibit defects in neuronal wiring owing to synapse loss and/or dys-regulated axon branching. Despite decades of research, how the two inter-dependent cellular processes: axon branching and synaptogenesis are coupled locally in the presynaptic arborizations is still unclear. In my doctoral work, I investigated the possible role of EGF receptor (EGFR) activity in coregulating axon branching and synapse formation in a spatiotemporally restricted fashion, locally in the medulla innervating Dorsal Cluster Neuron (M- DCN)/LC14 axon terminals. In this work I have explored how genetically encoded EGFR randomly recycles in the axon branch terminals, thus creating an asymmetric, non-deterministic distribution pattern. Asymmetric EGFR activity in the branches acts as a permissive signal for axon branch pruning. I observed that the M-DCN branches which stochastically becomes EGFR ‘+’ during development are synaptogenic, which means they can recruit synaptic machineries like Syd1 and Bruchpilot (Brp). My work showed that EGFR activity has a dual role in establishing proper M-DCN wiring; first in regulating primary branch consolidation possibly via actin regulation prior to synaptogenesis. Later in maintaining/protecting the levels of late Active Zone (AZ) protein Brp in the presynaptic branches by suppressing basal autophagy level during synaptogenesis. When M-DCNs lack optimal EGFR activity, the basal autophagy level increases resulting in loss of Brp marked synapses which is causal to increased exploratory branches and post-synaptic target loss. Lack of EGFR activity affects the M-DCN wiring pattern that makes adult flies more active and behave like obsessive compulsive in object fixation assay. In the second part of my doctoral work, I have asked how non-genetic factors like developmental temperature affects adult brain wiring. To test that, I increased or decreased rearing temperature which is known to inversely affect pupal developmental rate. We asked if all the noisy cellular processes of neuronal assembly: filopodial dynamics, axon branching, synapse formation and postsynaptic connections scale up or down accordingly. I observed that indeed all the cellular processes slow down at lower developmental temperature and vice versa, which changes the DCN wiring pattern accordingly. Interestingly, behavior of flies adapts to their developmental temperature, performing best at the temperature they have been raised at. This shows that optimal brain function is an adaptation of robust brain wiring patterns which are specified by noisy developmental processes. In conclusion, my doctoral work helps us better understand the developmental regulation of axon branching and synapse formation for establishing precise brain wiring pattern. We need all the cell intrinsic developmental processes to be highly regulated in space and time. It is infact a combinatorial effect of such stochastic processes and external factors that contribute to the final outcome, a functional and robust adult brain

    Patterning by cell-to-cell communication

    Get PDF
    This thesis addresses the question of how patterning may arise through cell-to-cell communication. It combines quantitative data analysis with computational techniques to understand biological patterning processes. The fi�rst section describes an investigation into the robustness of an evolved arti�ficial patterning system. Cellular automata rules were implemented sequentially according to the instructions in a simple `genome'. In this way, a set of target patterns could be evolved using a genetic algorithm. The patterning systems were tested for robustness by perturbing cell states during their development. This exposed how certain types of patterning rule had very di�fferent levels of robustness to perturbations. Rules that generated patterns with complex divergent patterns were more likely to amplify the e�ffect of a perturbation. When smaller genomes, comprising less individual rules, were evolved to match certain target patterns, these were shown to be more likely to select complex patterning rules. As a result, the developmental systems based on smaller genomes were less robust than those with larger genome sizes. Section two provides an analysis of the patterning of microchaetes in the epithelial layer of the notum of Drosophila flies. It is shown that the pattern spacing is not sufficiently described by a model of lateral inhibition through Delta-Notch signalling between adjacent cells. A computational model is used to demonstrate the viability of long range signalling through a dynamic network of �filopodia, observed in the basal layer of the epithelium. In-vivo experiments con�rm that when fi�lopodia lengths are effected by mutations the pattern spacing reduces in accordance with the model. In the fi�nal section the behaviour of simple asynchronous cellular automata are analysed. It is shown how these diff�er to the synchronous cellular automata used in the fi�rst section. A set of rules are identifi�ed whose emergent behaviour is similar to the lateral inhibition patterning process established by the Delta-Notch signalling system. Among these rules a particular subset are found to produce patterns that adjust their spacing, over the course of their development, towards a more ordered and densely packed state. A re-examination of the Delta-Notch signalling model reveals that this type of packing optimisation could take place with either dynamic �filopodial signalling, or as an alternative, transient Delta signalling at each cell. Under certain parameter regimes the patterns become more densely packed over time, whilst maintaining a minimum zone of inhibition around each Delta expressing cell. The asynchronous CA are also used to demonstrate how stripes can be formed by cell-to-cell signalling and optimised, under certain conditions, so that they align in a single direction. This is presented as a possible novel alternative to the reaction-di�ffusion mechanism that is commonly used to model the patterning of spots and stripes

    Diversity and Evolution of Butterfly Wing Patterns: An Integrative Approach

    Get PDF
    nymphalid; ecology; evolution; genetics; mimicr

    Modeling Planarian Regeneration: A Primer for Reverse-Engineering the Worm

    Get PDF
    A mechanistic understanding of robust self-assembly and repair capabilities of complex systems would have enormous implications for basic evolutionary developmental biology as well as for transformative applications in regenerative biomedicine and the engineering of highly fault-tolerant cybernetic systems. Molecular biologists are working to identify the pathways underlying the remarkable regenerative abilities of model species that perfectly regenerate limbs, brains, and other complex body parts. However, a profound disconnect remains between the deluge of high-resolution genetic and protein data on pathways required for regeneration, and the desired spatial, algorithmic models that show how self-monitoring and growth control arise from the synthesis of cellular activities. This barrier to progress in the understanding of morphogenetic controls may be breached by powerful techniques from the computational sciences—using non-traditional modeling approaches to reverse-engineer systems such as planaria: flatworms with a complex bodyplan and nervous system that are able to regenerate any body part after traumatic injury. Currently, the involvement of experts from outside of molecular genetics is hampered by the specialist literature of molecular developmental biology: impactful collaborations across such different fields require that review literature be available that presents the key functional capabilities of important biological model systems while abstracting away from the often irrelevant and confusing details of specific genes and proteins. To facilitate modeling efforts by computer scientists, physicists, engineers, and mathematicians, we present a different kind of review of planarian regeneration. Focusing on the main patterning properties of this system, we review what is known about the signal exchanges that occur during regenerative repair in planaria and the cellular mechanisms that are thought to underlie them. By establishing an engineering-like style for reviews of the molecular developmental biology of biomedically important model systems, significant fresh insights and quantitative computational models will be developed by new collaborations between biology and the information sciences

    Ordered patterning of the sensory system is susceptible to stochastic features of gene expression

    Get PDF
    Sensory neuron numbers and positions are precisely organized to accurately map environmental signals in the brain. This precision emerges from biochemical processes within and between cells that are inherently stochastic. We investigated impact of stochastic gene expression on pattern formation, focusing on senseless (sens), a key determinant of sensory fate in Drosophila. Perturbing microRNA regulation or genomic location of sens produced distinct noise signatures. Noise was greatly enhanced when both sens alleles were present in homologous loci such that each allele was regulated in trans by the other allele. This led to disordered patterning. In contrast, loss of microRNA repression of sens increased protein abundance but not sensory pattern disorder. This suggests that gene expression stochasticity is a critical feature that must be constrained during development to allow rapid yet accurate cell fate resolution
    corecore