152,856 research outputs found

    Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    Get PDF
    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology

    (Almost) tight bounds for randomized and quantum Local Search on hypercubes and grids

    Full text link
    The Local Search problem, which finds a local minimum of a black-box function on a given graph, is of both practical and theoretical importance to many areas in computer science and natural sciences. In this paper, we show that for the Boolean hypercube \B^n, the randomized query complexity of Local Search is Θ(2n/2n1/2)\Theta(2^{n/2}n^{1/2}) and the quantum query complexity is Θ(2n/3n1/6)\Theta(2^{n/3}n^{1/6}). We also show that for the constant dimensional grid [N1/d]d[N^{1/d}]^d, the randomized query complexity is Θ(N1/2)\Theta(N^{1/2}) for d4d \geq 4 and the quantum query complexity is Θ(N1/3)\Theta(N^{1/3}) for d6d \geq 6. New lower bounds for lower dimensional grids are also given. These improve the previous results by Aaronson [STOC'04], and Santha and Szegedy [STOC'04]. Finally we show for [N1/2]2[N^{1/2}]^2 a new upper bound of O(N1/4(loglogN)3/2)O(N^{1/4}(\log\log N)^{3/2}) on the quantum query complexity, which implies that Local Search on grids exhibits different properties at low dimensions.Comment: 18 pages, 1 figure. v2: introduction rewritten, references added. v3: a line for grant added. v4: upper bound section rewritte

    Cluster-Based Load Balancing Algorithms for Grids

    Full text link
    E-science applications may require huge amounts of data and high processing power where grid infrastructures are very suitable for meeting these requirements. The load distribution in a grid may vary leading to the bottlenecks and overloaded sites. We describe a hierarchical dynamic load balancing protocol for Grids. The Grid consists of clusters and each cluster is represented by a coordinator. Each coordinator first attempts to balance the load in its cluster and if this fails, communicates with the other coordinators to perform transfer or reception of load. This process is repeated periodically. We analyze the correctness, performance and scalability of the proposed protocol and show from the simulation results that our algorithm balances the load by decreasing the number of high loaded nodes in a grid environment.Comment: 17 pages, 11 figures; International Journal of Computer Networks, volume3, number 5, 201
    corecore