499,070 research outputs found

    Shaping sustainable harvest boundaries for marine populations despite estimation bias

    Get PDF
    Biased estimates of population status are a pervasive conservation problem. This problem has plagued assessments of commercial exploitation of marine species and can threaten the sustainability of both populations and fisheries. We develop a computer-intensive approach to minimize adverse effects of persistent estimation bias in assessments by optimizing operational harvest measures (harvest control rules) with closed-loop simulation of resource–management feedback systems: management strategy evaluation. Using saithe (Pollachius virens), a bottom-water, apex predator in the North Sea, as a real-world case study, we illustrate the approach by first diagnosing robustness of the existing harvest control rule and then optimizing it through propagation of biases (overestimated stock abundance and underestimated fishing pressure) along with select process and observation uncertainties. Analyses showed that severe biases lead to overly optimistic catch limits and then progressively magnify the amplitude of catch fluctuation, thereby posing unacceptably high overharvest risks. Consistent performance of management strategies to conserve the resource can be achieved by developing more robust control rules. These rules explicitly account for estimation bias through a computational grid search for a set of control parameters (threshold abundance that triggers management action, Btrigger, and target exploitation rate, Ftarget) that maximize yield while keeping stock abundance above a precautionary level. When the biases become too severe, optimized control parameters– for saithe, raising Btrigger and lowering Ftarget–would safeguard against overharvest risk (<3.5% probability of stock depletion) and provide short-term stability in catch limit (<20% year-to-year variation), thereby minimizing disruption to fishing communities. The precautionary approach to fine-tuning adaptive risk management through management strategy evaluation offers a powerful tool to better shape sustainable harvest boundaries for exploited resource populations when estimation bias persists. By explicitly accounting for emergent sources of uncertainty our proposed approach ensures effective conservation and sustainable exploitation of living marine resources even under profound uncertainty.submittedVersio

    Using MCD-DVS for dynamic thermal management performance improvement

    Get PDF
    With chip temperature being a major hurdle in microprocessor design, techniques to recover the performance loss due to thermal emergency mechanisms are crucial in order to sustain performance growth. Many techniques for power reduction in the past and some on thermal management more recently have contributed to alleviate this problem. Probably the most important thermal control technique is dynamic voltage and frequency scaling (DVS) which allows for almost cubic reduction in power with worst-case performance penalty only linear. So far, DVS techniques for temperature control have been studied at the chip level. Finer grain DVS is feasible if a globally-asynchronous locally-synchronous (GALS) design style is employed. GALS, also known as multiple-clock domain (MCD), allows for an independent voltage and frequency control for each one of the clock domains that are part of the chip. There are several studies on DVS for GALS that aim to improve energy and power efficiency but not temperature. This paper proposes and analyses the usage of DVS at the domain level to control temperature in a clustered MCD microarchitecture with the goal of improving the performance of applications that do not meet the thermal constraints imposed by the designers.Peer ReviewedPostprint (published version

    Towards Energy-Proportional Computing for Enterprise-Class Server Workloads

    Get PDF
    Massive data centers housing thousands of computing nodes have become commonplace in enterprise computing, and the power consumption of such data centers is growing at an unprecedented rate. Adding to the problem is the inability of the servers to exhibit energy proportionality, i.e., provide energy-ecient execution under all levels of utilization, which diminishes the overall energy eciency of the data center. It is imperative that we realize eective strategies to control the power consumption of the server and improve the energy eciency of data centers. With the advent of Intel Sandy Bridge processors, we have the ability to specify a limit on power consumption during runtime, which creates opportunities to design new power-management techniques for enterprise workloads and make the systems that they run on more energy-proportional. In this paper, we investigate whether it is possible to achieve energy proportionality for an enterprise-class server workload, namely SPECpower ssj2008 benchmark, by using Intel's Running Average Power Limit (RAPL) interfaces. First, we analyze the power consumption and characterize the instantaneous power prole of the SPECpower benchmark at a subsystem-level using the on-chip energy meters exposed via the RAPL interfaces. We then analyze the impact of RAPL power limiting on the performance, per-transaction response time, power consumption, and energy eciency of the benchmark under dierent load levels. Our observations and results shed light on the ecacy of the RAPL interfaces and provide guidance for designing power-management techniques for enterprise-class workloads

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    Limits on Fundamental Limits to Computation

    Full text link
    An indispensable part of our lives, computing has also become essential to industries and governments. Steady improvements in computer hardware have been supported by periodic doubling of transistor densities in integrated circuits over the last fifty years. Such Moore scaling now requires increasingly heroic efforts, stimulating research in alternative hardware and stirring controversy. To help evaluate emerging technologies and enrich our understanding of integrated-circuit scaling, we review fundamental limits to computation: in manufacturing, energy, physical space, design and verification effort, and algorithms. To outline what is achievable in principle and in practice, we recall how some limits were circumvented, compare loose and tight limits. We also point out that engineering difficulties encountered by emerging technologies may indicate yet-unknown limits.Comment: 15 pages, 4 figures, 1 tabl

    Characterizing Service Level Objectives for Cloud Services: Motivation of Short-Term Cache Allocation Performance Modeling

    Get PDF
    Service level objectives (SLOs) stipulate performance goals for cloud applications, microservices, and infrastructure. SLOs are widely used, in part, because system managers can tailor goals to their products, companies, and workloads. Systems research intended to support strong SLOs should target realistic performance goals used by system managers in the field. Evaluations conducted with uncommon SLO goals may not translate to real systems. Some textbooks discuss the structure of SLOs but (1) they only sketch SLO goals and (2) they use outdated examples. We mined real SLOs published on the web, extracted their goals and characterized them. Many web documents discuss SLOs loosely but few provide details and reflect real settings. Systematic literature review (SLR) prunes results and reduces bias by (1) modeling expected SLO structure and (2) detecting and removing outliers. We collected 75 SLOs where response time, query percentile and reporting period were specified. We used these SLOs to confirm and refute common perceptions. For example, we found few SLOs with response time guarantees below 10 ms for 90% or more queries. This reality bolsters perceptions that single digit SLOs face fundamental research challenges.This work was funded by NSF Grants 1749501 and 1350941.No embargoAcademic Major: Computer Science and EngineeringAcademic Major: Financ
    • …
    corecore