492,592 research outputs found

    Recurrent Saliency Transformation Network: Incorporating Multi-Stage Visual Cues for Small Organ Segmentation

    Full text link
    We aim at segmenting small organs (e.g., the pancreas) from abdominal CT scans. As the target often occupies a relatively small region in the input image, deep neural networks can be easily confused by the complex and variable background. To alleviate this, researchers proposed a coarse-to-fine approach, which used prediction from the first (coarse) stage to indicate a smaller input region for the second (fine) stage. Despite its effectiveness, this algorithm dealt with two stages individually, which lacked optimizing a global energy function, and limited its ability to incorporate multi-stage visual cues. Missing contextual information led to unsatisfying convergence in iterations, and that the fine stage sometimes produced even lower segmentation accuracy than the coarse stage. This paper presents a Recurrent Saliency Transformation Network. The key innovation is a saliency transformation module, which repeatedly converts the segmentation probability map from the previous iteration as spatial weights and applies these weights to the current iteration. This brings us two-fold benefits. In training, it allows joint optimization over the deep networks dealing with different input scales. In testing, it propagates multi-stage visual information throughout iterations to improve segmentation accuracy. Experiments in the NIH pancreas segmentation dataset demonstrate the state-of-the-art accuracy, which outperforms the previous best by an average of over 2%. Much higher accuracies are also reported on several small organs in a larger dataset collected by ourselves. In addition, our approach enjoys better convergence properties, making it more efficient and reliable in practice.Comment: Accepted to CVPR 2018 (10 pages, 6 figures

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle

    An Unsupervised Learning Model for Deformable Medical Image Registration

    Full text link
    We present a fast learning-based algorithm for deformable, pairwise 3D medical image registration. Current registration methods optimize an objective function independently for each pair of images, which can be time-consuming for large data. We define registration as a parametric function, and optimize its parameters given a set of images from a collection of interest. Given a new pair of scans, we can quickly compute a registration field by directly evaluating the function using the learned parameters. We model this function using a convolutional neural network (CNN), and use a spatial transform layer to reconstruct one image from another while imposing smoothness constraints on the registration field. The proposed method does not require supervised information such as ground truth registration fields or anatomical landmarks. We demonstrate registration accuracy comparable to state-of-the-art 3D image registration, while operating orders of magnitude faster in practice. Our method promises to significantly speed up medical image analysis and processing pipelines, while facilitating novel directions in learning-based registration and its applications. Our code is available at https://github.com/balakg/voxelmorph .Comment: 9 pages, in CVPR 201

    Anytime Stereo Image Depth Estimation on Mobile Devices

    Full text link
    Many applications of stereo depth estimation in robotics require the generation of accurate disparity maps in real time under significant computational constraints. Current state-of-the-art algorithms force a choice between either generating accurate mappings at a slow pace, or quickly generating inaccurate ones, and additionally these methods typically require far too many parameters to be usable on power- or memory-constrained devices. Motivated by these shortcomings, we propose a novel approach for disparity prediction in the anytime setting. In contrast to prior work, our end-to-end learned approach can trade off computation and accuracy at inference time. Depth estimation is performed in stages, during which the model can be queried at any time to output its current best estimate. Our final model can process 1242Ɨ \times 375 resolution images within a range of 10-35 FPS on an NVIDIA Jetson TX2 module with only marginal increases in error -- using two orders of magnitude fewer parameters than the most competitive baseline. The source code is available at https://github.com/mileyan/AnyNet .Comment: Accepted by ICRA201

    Collaboration in sensor network research: an in-depth longitudinal analysis of assortative mixing patterns

    Get PDF
    Many investigations of scientific collaboration are based on statistical analyses of large networks constructed from bibliographic repositories. These investigations often rely on a wealth of bibliographic data, but very little or no other information about the individuals in the network, and thus, fail to illustrate the broader social and academic landscape in which collaboration takes place. In this article, we perform an in-depth longitudinal analysis of a relatively small network of scientific collaboration (N = 291) constructed from the bibliographic record of a research center involved in the development and application of sensor network and wireless technologies. We perform a preliminary analysis of selected structural properties of the network, computing its range, configuration and topology. We then support our preliminary statistical analysis with an in-depth temporal investigation of the assortative mixing of selected node characteristics, unveiling the researchers' propensity to collaborate preferentially with others with a similar academic profile. Our qualitative analysis of mixing patterns offers clues as to the nature of the scientific community being modeled in relation to its organizational, disciplinary, institutional, and international arrangements of collaboration.Comment: Scientometrics (In press
    • ā€¦
    corecore