640,503 research outputs found

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Computer Aided Verification

    Get PDF
    The open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Learning of Art Style Using AI and Its Evaluation Based on Psychological Experiments

    Get PDF
    [ICEC 2020]19th IFIP TC 14 International Conference, ICEC 2020, Xi'an, China, November 10–13, 2020, ProceedingsPart of the Lecture Notes in Computer Science book series (LNCS, volume 12523)GANs (Generative adversarial networks) is a new AI technology that has the capability of achieving transformation between two image sets. Using GANs we have carried out a comparison between several art sets with different art styles. We have prepared four image sets; a flower image set with Impressionism art style, one with the Western abstract art style, one with Chinese figurative art style, and one with the art style of Naoko Tosa, one of the authors. Using these four sets we have carried out a psychological experiment to evaluate the difference between these four sets. We have found that abstract drawings and figurative drawings are judged to be different, figurative drawings in West and East were judged to be similar, and Naoko Tosa’s artworks are similar to Western abstract artworks

    Developing Japanese Ikebana as a Digital Painting Tool via AI

    Get PDF
    [ICEC 2020]19th IFIP TC 14 International Conference, ICEC 2020, Xi'an, China, November 10–13, 2020, ProceedingsPart of the Lecture Notes in Computer Science book series (LNCS, volume 12523)In this research, we have carried out various experiments to perform mutual transformation between a domain of Ikebana (Japanese traditional flower arrangement) photos and other domains of images (landscapes, animals, portraits) to create new artworks via CycleGAN, a variation of GANs (Generative Adversarial Networks) - new AI technology that can perform deep learning with less training data. With the capability of achieving transformation between two image sets using CycleGAN, we obtained several interesting results in which Ikebana plays the role of a digital painting tool due to the flexibility and minimality of the Japanese culture form. Our experiments show that Ikebana can be developed as a painting tool in digital art with the help of CycleGAN and opens a new way to create digital artworks of high-abstracted level by applying AI techniques to elements from traditional culture

    Route Planning in Transportation Networks

    Full text link
    We survey recent advances in algorithms for route planning in transportation networks. For road networks, we show that one can compute driving directions in milliseconds or less even at continental scale. A variety of techniques provide different trade-offs between preprocessing effort, space requirements, and query time. Some algorithms can answer queries in a fraction of a microsecond, while others can deal efficiently with real-time traffic. Journey planning on public transportation systems, although conceptually similar, is a significantly harder problem due to its inherent time-dependent and multicriteria nature. Although exact algorithms are fast enough for interactive queries on metropolitan transit systems, dealing with continent-sized instances requires simplifications or heavy preprocessing. The multimodal route planning problem, which seeks journeys combining schedule-based transportation (buses, trains) with unrestricted modes (walking, driving), is even harder, relying on approximate solutions even for metropolitan inputs.Comment: This is an updated version of the technical report MSR-TR-2014-4, previously published by Microsoft Research. This work was mostly done while the authors Daniel Delling, Andrew Goldberg, and Renato F. Werneck were at Microsoft Research Silicon Valle
    corecore