381,873 research outputs found

    Benchmark Analysis of Representative Deep Neural Network Architectures

    Full text link
    This work presents an in-depth analysis of the majority of the deep neural networks (DNNs) proposed in the state of the art for image recognition. For each DNN multiple performance indices are observed, such as recognition accuracy, model complexity, computational complexity, memory usage, and inference time. The behavior of such performance indices and some combinations of them are analyzed and discussed. To measure the indices we experiment the use of DNNs on two different computer architectures, a workstation equipped with a NVIDIA Titan X Pascal and an embedded system based on a NVIDIA Jetson TX1 board. This experimentation allows a direct comparison between DNNs running on machines with very different computational capacity. This study is useful for researchers to have a complete view of what solutions have been explored so far and in which research directions are worth exploring in the future; and for practitioners to select the DNN architecture(s) that better fit the resource constraints of practical deployments and applications. To complete this work, all the DNNs, as well as the software used for the analysis, are available online.Comment: Will appear in IEEE Acces

    FoveaBox: Beyond Anchor-based Object Detector

    Full text link
    We present FoveaBox, an accurate, flexible, and completely anchor-free framework for object detection. While almost all state-of-the-art object detectors utilize predefined anchors to enumerate possible locations, scales and aspect ratios for the search of the objects, their performance and generalization ability are also limited to the design of anchors. Instead, FoveaBox directly learns the object existing possibility and the bounding box coordinates without anchor reference. This is achieved by: (a) predicting category-sensitive semantic maps for the object existing possibility, and (b) producing category-agnostic bounding box for each position that potentially contains an object. The scales of target boxes are naturally associated with feature pyramid representations. In FoveaBox, an instance is assigned to adjacent feature levels to make the model more accurate.We demonstrate its effectiveness on standard benchmarks and report extensive experimental analysis. Without bells and whistles, FoveaBox achieves state-of-the-art single model performance on the standard COCO and Pascal VOC object detection benchmark. More importantly, FoveaBox avoids all computation and hyper-parameters related to anchor boxes, which are often sensitive to the final detection performance. We believe the simple and effective approach will serve as a solid baseline and help ease future research for object detection. The code has been made publicly available at https://github.com/taokong/FoveaBox .Comment: IEEE Transactions on Image Processing, code at: https://github.com/taokong/FoveaBo

    VideoCapsuleNet: A Simplified Network for Action Detection

    Full text link
    The recent advances in Deep Convolutional Neural Networks (DCNNs) have shown extremely good results for video human action classification, however, action detection is still a challenging problem. The current action detection approaches follow a complex pipeline which involves multiple tasks such as tube proposals, optical flow, and tube classification. In this work, we present a more elegant solution for action detection based on the recently developed capsule network. We propose a 3D capsule network for videos, called VideoCapsuleNet: a unified network for action detection which can jointly perform pixel-wise action segmentation along with action classification. The proposed network is a generalization of capsule network from 2D to 3D, which takes a sequence of video frames as input. The 3D generalization drastically increases the number of capsules in the network, making capsule routing computationally expensive. We introduce capsule-pooling in the convolutional capsule layer to address this issue which makes the voting algorithm tractable. The routing-by-agreement in the network inherently models the action representations and various action characteristics are captured by the predicted capsules. This inspired us to utilize the capsules for action localization and the class-specific capsules predicted by the network are used to determine a pixel-wise localization of actions. The localization is further improved by parameterized skip connections with the convolutional capsule layers and the network is trained end-to-end with a classification as well as localization loss. The proposed network achieves sate-of-the-art performance on multiple action detection datasets including UCF-Sports, J-HMDB, and UCF-101 (24 classes) with an impressive ~20% improvement on UCF-101 and ~15% improvement on J-HMDB in terms of v-mAP scores

    Exploiting Image-trained CNN Architectures for Unconstrained Video Classification

    Full text link
    We conduct an in-depth exploration of different strategies for doing event detection in videos using convolutional neural networks (CNNs) trained for image classification. We study different ways of performing spatial and temporal pooling, feature normalization, choice of CNN layers as well as choice of classifiers. Making judicious choices along these dimensions led to a very significant increase in performance over more naive approaches that have been used till now. We evaluate our approach on the challenging TRECVID MED'14 dataset with two popular CNN architectures pretrained on ImageNet. On this MED'14 dataset, our methods, based entirely on image-trained CNN features, can outperform several state-of-the-art non-CNN models. Our proposed late fusion of CNN- and motion-based features can further increase the mean average precision (mAP) on MED'14 from 34.95% to 38.74%. The fusion approach achieves the state-of-the-art classification performance on the challenging UCF-101 dataset
    • …
    corecore