267,986 research outputs found

    Active Learning of Deterministic Timed Automata with Myhill-Nerode Style Characterization

    Get PDF
    Part of the Lecture Notes in Computer Science book series (LNCS, volume 13964)35th International Conference, CAV 2023, Paris, France, July 17ā€“22, 2023We present an algorithm to learn a deterministic timed automaton (DTA) via membership and equivalence queries. Our algorithm is an extension of the L* algorithm with a Myhill-Nerode style characterization of recognizable timed languages, which is the class of timed languages recognizable by DTAs. We first characterize the recognizable timed languages with a Nerode-style congruence. Using it, we give an algorithm with a smart teacher answering symbolic membership queries in addition to membership and equivalence queries. With a symbolic membership query, one can ask the membership of a certain set of timed words at one time. We prove that for any recognizable timed language, our learning algorithm returns a DTA recognizing it. We show how to answer a symbolic membership query with finitely many membership queries. We also show that our learning algorithm requires a polynomial number of queries with a smart teacher and an exponential number of queries with a normal teacher. We applied our algorithm to various benchmarks and confirmed its effectiveness with a normal teacher

    Languages, machines, and classical computation

    Get PDF
    3rd ed, 2021. A circumscription of the classical theory of computation building up from the Chomsky hierarchy. With the usual topics in formal language and automata theory

    Polishness of some topologies related to word or tree automata

    Full text link
    We prove that the B\"uchi topology and the automatic topology are Polish. We also show that this cannot be fully extended to the case of a space of infinite labelled binary trees; in particular the B\"uchi and the Muller topologies are not Polish in this case.Comment: This paper is an extended version of a paper which appeared in the proceedings of the 26th EACSL Annual Conference on Computer Science and Logic, CSL 2017. The main addition with regard to the conference paper consists in the study of the B\"uchi topology and of the Muller topology in the case of a space of trees, which now forms Section

    Abstract State Machines 1988-1998: Commented ASM Bibliography

    Get PDF
    An annotated bibliography of papers which deal with or use Abstract State Machines (ASMs), as of January 1998.Comment: Also maintained as a BibTeX file at http://www.eecs.umich.edu/gasm

    An overview of Mirjam and WeaveC

    Get PDF
    In this chapter, we elaborate on the design of an industrial-strength aspectoriented programming language and weaver for large-scale software development. First, we present an analysis on the requirements of a general purpose aspect-oriented language that can handle crosscutting concerns in ASML software. We also outline a strategy on working with aspects in large-scale software development processes. In our design, we both re-use existing aspect-oriented language abstractions and propose new ones to address the issues that we identified in our analysis. The quality of the code ensured by the realized language and weaver has a positive impact both on maintenance effort and lead-time in the first line software development process. As evidence, we present a short evaluation of the language and weaver as applied today in the software development process of ASML

    A Computational Approach to Reflective Meta-Reasoning about Languages with Bindings

    Get PDF
    We present a foundation for a computational meta-theory of languages with bindings implemented in a computer-aided formal reasoning environment. Our theory provides the ability to reason abstractly about operators, languages, open-ended languages, classes of languages, etc. The theory is based on the ideas of higher-order abstract syntax, with an appropriate induction principle parameterized over the language (i.e. a set of operators) being used. In our approach, both the bound and free variables are treated uniformly and this uniform treatment extends naturally to variable-length bindings. The implementation is reflective, namely there is a natural mapping between the meta-language of the theorem-prover and the object language of our theory. The object language substitution operation is mapped to the meta-language substitution and does not need to be defined recursively. Our approach does not require designing a custom type theory; in this paper we describe the implementation of this foundational theory within a general-purpose type theory. This work is fully implemented in the MetaPRL theorem prover, using the pre-existing NuPRL-like Martin-Lof-style computational type theory. Based on this implementation, we lay out an outline for a framework for programming language experimentation and exploration as well as a general reflective reasoning framework. This paper also includes a short survey of the existing approaches to syntactic reflection
    • ā€¦
    corecore