68,474 research outputs found

    Digitally interpreting traditional folk crafts

    Get PDF
    The cultural heritage preservation requires that objects persist throughout time to continue to communicate an intended meaning. The necessity of computer-based preservation and interpretation of traditional folk crafts is validated by the decreasing number of masters, fading technologies, and crafts losing economic ground. We present a long-term applied research project on the development of a mathematical basis, software tools, and technology for application of desktop or personal fabrication using compact, cheap, and environmentally friendly fabrication devices, including '3D printers', in traditional crafts. We illustrate the properties of this new modeling and fabrication system using several case studies involving the digital capture of traditional objects and craft patterns, which we also reuse in modern designs. The test application areas for the development are traditional crafts from different cultural backgrounds, namely Japanese lacquer ware and Norwegian carvings. Our project includes modeling existing artifacts, Web presentations of the models, automation of the models fabrication, and the experimental manufacturing of new designs and forms

    A survey of comics research in computer science

    Full text link
    Graphical novels such as comics and mangas are well known all over the world. The digital transition started to change the way people are reading comics, more and more on smartphones and tablets and less and less on paper. In the recent years, a wide variety of research about comics has been proposed and might change the way comics are created, distributed and read in future years. Early work focuses on low level document image analysis: indeed comic books are complex, they contains text, drawings, balloon, panels, onomatopoeia, etc. Different fields of computer science covered research about user interaction and content generation such as multimedia, artificial intelligence, human-computer interaction, etc. with different sets of values. We propose in this paper to review the previous research about comics in computer science, to state what have been done and to give some insights about the main outlooks

    "Sticky Hands": learning and generalization for cooperative physical interactions with a humanoid robot

    Get PDF
    "Sticky Hands" is a physical game for two people involving gentle contact with the hands. The aim is to develop relaxed and elegant motion together, achieve physical sensitivity-improving reactions, and experience an interaction at an intimate yet comfortable level for spiritual development and physical relaxation. We developed a control system for a humanoid robot allowing it to play Sticky Hands with a human partner. We present a real implementation including a physical system, robot control, and a motion learning algorithm based on a generalizable intelligent system capable itself of generalizing observed trajectories' translation, orientation, scale and velocity to new data, operating with scalable speed and storage efficiency bounds, and coping with contact trajectories that evolve over time. Our robot control is capable of physical cooperation in a force domain, using minimal sensor input. We analyze robot-human interaction and relate characteristics of our motion learning algorithm with recorded motion profiles. We discuss our results in the context of realistic motion generation and present a theoretical discussion of stylistic and affective motion generation based on, and motivating cross-disciplinary research in computer graphics, human motion production and motion perception

    Space-Time Transfinite Interpolation of Volumetric Material Properties

    Get PDF
    The paper presents a novel technique based on extension of a general mathematical method of transfinite interpolation to solve an actual problem in the context of a heterogeneous volume modelling area. It deals with time-dependent changes to the volumetric material properties (material density, colour and others) as a transformation of the volumetric material distributions in space-time accompanying geometric shape transformations such as metamorphosis. The main idea is to represent the geometry of both objects by scalar fields with distance properties, to establish in a higher-dimensional space a time gap during which the geometric transformation takes place, and to use these scalar fields to apply the new space-time transfinite interpolation to volumetric material attributes within this time gap. The proposed solution is analytical in its nature, does not require heavy numerical computations and can be used in real-time applications. Applications of this technique also include texturing and displacement mapping of time-variant surfaces, and parametric design of volumetric microstructures

    High Performance Direct Gravitational N-body Simulations on Graphics Processing Units

    Get PDF
    We present the results of gravitational direct NN-body simulations using the commercial graphics processing units (GPU) NVIDIA Quadro FX1400 and GeForce 8800GTX, and compare the results with GRAPE-6Af special purpose hardware. The force evaluation of the NN-body problem was implemented in Cg using the GPU directly to speed-up the calculations. The integration of the equations of motions were, running on the host computer, implemented in C using the 4th order predictor-corrector Hermite integrator with block time steps. We find that for a large number of particles (N \apgt 10^4) modern graphics processing units offer an attractive low cost alternative to GRAPE special purpose hardware. A modern GPU continues to give a relatively flat scaling with the number of particles, comparable to that of the GRAPE. Using the same time step criterion the total energy of the NN-body system was conserved better than to one in 10610^6 on the GPU, which is only about an order of magnitude worse than obtained with GRAPE. For N\apgt 10^6 the GeForce 8800GTX was about 20 times faster than the host computer. Though still about an order of magnitude slower than GRAPE, modern GPU's outperform GRAPE in their low cost, long mean time between failure and the much larger onboard memory; the GRAPE-6Af holds at most 256k particles whereas the GeForce 8800GTF can hold 9 million particles in memory.Comment: Submitted to New Astronom

    The Global Artificial Intelligence Revolution Challenges Patent Eligibility Laws

    Get PDF
    This Article examines patent eligibility jurisprudence of artificial intelligence in the United States, Europe, France, Japan, and Singapore. It identifies de facto requirements of patent-eligible artificial intelligence. It also examines the adaptability of patent eligibility jurisprudence to adapt with the growth of artificial intelligence

    An Analysis of Publication Venues for Automatic Differentiation Research

    Get PDF
    We present the results of our analysis of publication venues for papers on automatic differentiation (AD), covering academic journals and conference proceedings. Our data are collected from the AD publications database maintained by the autodiff.org community website. The database is purpose-built for the AD field and is expanding via submissions by AD researchers. Therefore, it provides a relatively noise-free list of publications relating to the field. However, it does include noise in the form of variant spellings of journal and conference names. We handle this by manually correcting and merging these variants under the official names of corresponding venues. We also share the raw data we get after these corrections.Comment: 6 pages, 3 figure
    corecore