270,948 research outputs found

    Network on Chip: a New Approach of QoS Metric Modeling Based on Calculus Theory

    Full text link
    A NoC is composed by IP cores (Intellectual Propriety) and switches connected among themselves by communication channels. End-to-End Delay (EED) communication is accomplished by the exchange of data among IP cores. Often, the structure of particular messages is not adequate for the communication purposes. This leads to the concept of packet switching. In the context of NoCs, packets are composed by header, payload, and trailer. Packets are divided into small pieces called Flits. It appears of importance, to meet the required performance in NoC hardware resources. It should be specified in an earlier step of the system design. The main attention should be given to the choice of some network parameters such as the physical buffer size in the node. The EED and packet loss are some of the critical QoS metrics. Some real-time and multimedia applications bound up these parameters and require specific hardware resources and particular management approaches in the NoC switch. A traffic contract (SLA, Service Level Agreement) specifies the ability of a network or protocol to give guaranteed performance, throughput or latency bounds based on mutually agreed measures, usually by prioritizing traffic. A defined Quality of Service (QoS) may be required for some types of network real time traffic or multimedia applications. The main goal of this paper is, using the Network on Chip modeling architecture, to define a QoS metric. We focus on the network delay bound and packet losses. This approach is based on the Network Calculus theory, a mathematical model to represent the data flows behavior between IPs interconnected over NoC. We propose an approach of QoS-metric based on QoS-parameter prioritization factors for multi applications-service using calculus model

    Challenges to describe QoS requirements for web services quality prediction to support web services interoperability in electronic commerce

    Get PDF
    Quality of service (QoS) is significant and necessary for web service applications quality assurance. Furthermore, web services quality has contributed to the successful implementation of Electronic Commerce (EC) applications. However, QoS is still the big issue for web services research and remains one of the main research questions that need to be explored. We believe that QoS should not only be measured but should also be predicted during the development and implementation stages. However, there are challenges and constraints to determine and choose QoS requirements for high quality web services. Therefore, this paper highlights the challenges for the QoS requirements prediction as they are not easy to identify. Moreover, there are many different perspectives and purposes of web services, and various prediction techniques to describe QoS requirements. Additionally, the paper introduces a metamodel as a concept of what makes a good web service

    Perceptions of gender balance of IS journal editorial positions

    Get PDF
    An analysis of 18,854 editorial positions on IS journals was undertaken to examine the perceived gender balance of those positions as an indication of their contribution towards a positive role model for females considering an IS academic career. The nature and extent of perceived gender balance is examined in terms of overall composition of editorial positions, journal prestige and the specific area within IS covered by a journal. The results indicate that perceived gender balance of editorial positions reflects that of ICT academia generally, and that female representation appears to be concentrated in journals covering areas that are traditionally seen as female occupations, e.g., health, education, librarianship. As such, little or no encouragement is given to females considering an IS academic career.<br /

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems
    • …
    corecore