17,505 research outputs found

    Depth, balancing, and limits of the Elo model

    Get PDF
    -Much work has been devoted to the computational complexity of games. However, they are not necessarily relevant for estimating the complexity in human terms. Therefore, human-centered measures have been proposed, e.g. the depth. This paper discusses the depth of various games, extends it to a continuous measure. We provide new depth results and present tool (given-first-move, pie rule, size extension) for increasing it. We also use these measures for analyzing games and opening moves in Y, NoGo, Killall Go, and the effect of pie rules

    Symbol grounding and its implications for artificial intelligence

    Get PDF
    In response to Searle's well-known Chinese room argument against Strong AI (and more generally, computationalism), Harnad proposed that if the symbols manipulated by a robot were sufficiently grounded in the real world, then the robot could be said to literally understand. In this article, I expand on the notion of symbol groundedness in three ways. Firstly, I show how a robot might select the best set of categories describing the world, given that fundamentally continuous sensory data can be categorised in an almost infinite number of ways. Secondly, I discuss the notion of grounded abstract (as opposed to concrete) concepts. Thirdly, I give an objective criterion for deciding when a robot's symbols become sufficiently grounded for "understanding" to be attributed to it. This deeper analysis of what symbol groundedness actually is weakens Searle's position in significant ways; in particular, whilst Searle may be able to refute Strong AI in the specific context of present-day digital computers, he cannot refute computationalism in general

    Minds, Brains and Programs

    Get PDF
    This article can be viewed as an attempt to explore the consequences of two propositions. (1) Intentionality in human beings (and animals) is a product of causal features of the brain I assume this is an empirical fact about the actual causal relations between mental processes and brains It says simply that certain brain processes are sufficient for intentionality. (2) Instantiating a computer program is never by itself a sufficient condition of intentionality The main argument of this paper is directed at establishing this claim The form of the argument is to show how a human agent could instantiate the program and still not have the relevant intentionality. These two propositions have the following consequences (3) The explanation of how the brain produces intentionality cannot be that it does it by instantiating a computer program. This is a strict logical consequence of 1 and 2. (4) Any mechanism capable of producing intentionality must have causal powers equal to those of the brain. This is meant to be a trivial consequence of 1. (5) Any attempt literally to create intentionality artificially (strong AI) could not succeed just by designing programs but would have to duplicate the causal powers of the human brain. This follows from 2 and 4

    The Computational Intelligence of MoGo Revealed in Taiwan's Computer Go Tournaments

    Get PDF
    International audienceTHE AUTHORS ARE EXTREMELY GRATEFUL TO GRID5000 for helping in designing and experimenting around Monte-Carlo Tree Search. In order to promote computer Go and stimulate further development and research in the field, the event activities, "Computational Intelligence Forum" and "World 99 Computer Go Championship," were held in Taiwan. This study focuses on the invited games played in the tournament, "Taiwanese Go players versus the computer program MoGo," held at National University of Tainan (NUTN). Several Taiwanese Go players, including one 9-Dan professional Go player and eight amateur Go players, were invited by NUTN to play against MoGo from August 26 to October 4, 2008. The MoGo program combines All Moves As First (AMAF)/Rapid Action Value Estimation (RAVE) values, online "UCT-like" values, offline values extracted from databases, and expert rules. Additionally, four properties of MoGo are analyzed including: (1) the weakness in corners, (2) the scaling over time, (3) the behavior in handicap games, and (4) the main strength of MoGo in contact fights. The results reveal that MoGo can reach the level of 3 Dan with, (1) good skills for fights, (2) weaknesses in corners, in particular for "semeai" situations, and (3) weaknesses in favorable situations such as handicap games. It is hoped that the advances in artificial intelligence and computational power will enable considerable progress in the field of computer Go, with the aim of achieving the same levels as computer chess or Chinese chess in the future
    corecore