45,032 research outputs found

    Performance and prediction: Bayesian modelling of fallible choice in chess

    Get PDF
    Evaluating agents in decision-making applications requires assessing their skill and predicting their behaviour. Both are well developed in Poker-like situations, but less so in more complex game and model domains. This paper addresses both tasks by using Bayesian inference in a benchmark space of reference agents. The concepts are explained and demonstrated using the game of chess but the model applies generically to any domain with quantifiable options and fallible choice. Demonstration applications address questions frequently asked by the chess community regarding the stability of the rating scale, the comparison of players of different eras and/or leagues, and controversial incidents possibly involving fraud. The last include alleged under-performance, fabrication of tournament results, and clandestine use of computer advice during competition. Beyond the model world of games, the aim is to improve fallible human performance in complex, high-value tasks

    Chess software and its impact on chess players

    Get PDF
    Computer-aided chess is an important teaching method, as it allows a student to play under every condition possible, and regulates the speed of his/her development at an incremental pace, measured against actual players in the rated chess community. It is also relatively inexpensive, and pervasive, and allows players to match themselves against competitors from across the world. The learning process extends beyond games, as interactive software has shown it teaches several skills, such as opening, strategy, tactics, and chess-problem solving. Furthermore, current applications allow chess players to establish rankings via online chess tournaments, meet international grandmasters, and have access to training tools based on strategies from chess masters. Using 250 chess software packages, this research classifies them into distinct categories based mainly on the Gobet and Jansen's organization of the chess knowledge. This is followed by extensive discussion that analyzes these training tools, in order to identify the best training techniques available building on a research on human computer interaction, cognitive psychology, and chess theory. --P.ii.The original print copy of this thesis may be available here: http://wizard.unbc.ca/record=b151379

    Crosswords and the Computer

    Get PDF
    There is little question that the crossword is the most popular type of word puzzle in both England and America. Thousands are solved every year in newspapers and magazines by people who are unaware that the field of recreational linguistics stretches far beyond these limits. The cognitive processes that people use to solve word puzzles are of interest to both psychologists and computer programmers: what is human problem-solving behavior? can it be imitated by a computer? It is obvious that a computer is much faster and more accurate than a human being in repetitive arithmetic calculations or in list-sorting. However, it is not clear how a computer should be programmed to emulate (and, perhaps, improve upon) more creative activities such as playing chess, proving mathematical theorems, writing poetry, or translating one language into another

    On the limits of engine analysis for cheating detection in chess

    Get PDF
    The integrity of online games has important economic consequences for both the gaming industry and players of all levels, from professionals to amateurs. Where there is a high likelihood of cheating, there is a loss of trust and players will be reluctant to participate — particularly if this is likely to cost them money. Chess is a game that has been established online for around 25 years and is played over the Internet commercially. In that environment, where players are not physically present “over the board” (OTB), chess is one of the most easily exploitable games by those who wish to cheat, because of the widespread availability of very strong chess-playing programs. Allegations of cheating even in OTB games have increased significantly in recent years, and even led to recent changes in the laws of the game that potentially impinge upon players’ privacy. In this work, we examine some of the difficulties inherent in identifying the covert use of chess-playing programs purely from an analysis of the moves of a game. Our approach is to deeply examine a large collection of games where there is confidence that cheating has not taken place, and analyse those that could be easily misclassified. We conclude that there is a serious risk of finding numerous “false positives” and that, in general, it is unsafe to use just the moves of a single game as prima facie evidence of cheating. We also demonstrate that it is impossible to compute definitive values of the figures currently employed to measure similarity to a chess-engine for a particular game, as values inevitably vary at different depths and, even under identical conditions, when multi-threading evaluation is used

    Multimodal Observation and Interpretation of Subjects Engaged in Problem Solving

    Get PDF
    In this paper we present the first results of a pilot experiment in the capture and interpretation of multimodal signals of human experts engaged in solving challenging chess problems. Our goal is to investigate the extent to which observations of eye-gaze, posture, emotion and other physiological signals can be used to model the cognitive state of subjects, and to explore the integration of multiple sensor modalities to improve the reliability of detection of human displays of awareness and emotion. We observed chess players engaged in problems of increasing difficulty while recording their behavior. Such recordings can be used to estimate a participant's awareness of the current situation and to predict ability to respond effectively to challenging situations. Results show that a multimodal approach is more accurate than a unimodal one. By combining body posture, visual attention and emotion, the multimodal approach can reach up to 93% of accuracy when determining player's chess expertise while unimodal approach reaches 86%. Finally this experiment validates the use of our equipment as a general and reproducible tool for the study of participants engaged in screen-based interaction and/or problem solving
    • 

    corecore