78,745 research outputs found

    Investigation of the effects of microcomputers on the work of professional accountants

    Full text link
    Information technology research over the past two decades suggests that the installation and use of computers fundamentally affects the structure and function of organisations and, m particular, the workers in these organizations. Following the release of the IBM Personal Computer in 1982, microcomputers have become an integral part of most work environments. The accounting services industry, in particular, has felt the impact of this ‘microcomputer revolution’. In Big Six accounting firms, there is almost one microcomputer for each professional accountant employed, Notwithstanding this, little research has been done on the effect of microcomputers on the work outcomes of professional accountants working in these firms. This study addresses this issue. It assesses, in an organisational setting, how accountant’ perceptions of ease of use and usefulness of microcomputers act on their computer anxieties, microcomputer attitudes and use to affect their job satisfaction and job performance. The research also examines how different types of human-computer interfaces affect the relationships between accountants\u27 beliefs about microcomputer utility and ease of use, computer anxiety, microcomputer attitudes and microcomputer use. To attain this research objective, a conceptual model was first developed, The model indicates that work outcomes (job satisfaction and job performance) of professional accountants using microcomputers are influenced by users\u27 perceptions of ease of use and usefulness of microcomputers via paths through (a) the level of computer anxiety experienced by users, (b) the general attitude of users toward using microcomputers, and (c) the extent to which microcomputers are used by individuals. Empirically testable propositions were derived from the model to test the postulated relationships between these constructs. The study also tested whether or not users of different human-computer interfaces reacted differently to the perceptions and anxieties they hold about microcomputers and their use in the workplace. It was argued that users of graphical interfaces, because of the characteristics of those interfaces, react differently to their perceptions and anxieties about microcomputers compared with users of command-line (or textual-based) interfaces. A passive-observational study in a field setting was used to test the model and the research propositions. Data was collected from 164 professional accountants working in a Big Six accounting firm in a metropolitan city in Australia. Structural equation modelling techniques were used to test the, hypothesised causal relationships between the components comprising the general research model. Path analysis and ordinary least squares regression was used to estimate the parameters of the model and analyse the data obtained. Multisample analysis (or stacked model analysis) using EQS was used to test the fit of the model to the data of the different human-computer interface groups and to estimate the parameters for the paths in those different groups. The results show that the research model is a good description of the data. The job satisfaction of professional accountants is directly affected by their attitude toward using microcomputers and by microcomputer use itself. However, job performance appears to be only directly affected by microcomputer attitudes. Microcomputer use does not directly affect job performance. Along with perceived ease of use and perceived usefulness, computer anxiety is shown to be an important determinant of attitudes toward using microcomputers - higher levels of computer anxiety negatively affect attitudes toward using microcomputers. Conversely, higher levels of perceived ease of use and perceived usefulness heighten individuals\u27 positive attitudes toward using microcomputers. Perceived ease of use and perceived usefulness also indirectly affect microcomputer attitudes through their effect on computer anxiety. The results show that higher levels of perceived ease of use and perceived usefulness result in lower levels of computer anxiety. A surprising result from the study is that while perceived ease of use is shown to directly affect the level of microcomputer usage, perceived usefulness and attitude toward using microcomputers does not. The results of the multisample analysis confirm that the research model fits the stacked model and that the stacked model is a significantly better fit if specific parameters are allowed to vary between the two human-computer interface user groups. In general, these results confirm that an interaction exists between the type of human-computer interface (the variable providing the grouping) and the other variables in the model The results show a clear difference between the two groups in the way in which perceived ease of use and perceived usefulness affect microcomputer attitude. In the case of users of command-line interfaces, these variables appear to affect microcomputer attitude via an intervening variable, computer anxiety, whereas in the graphical interface user group the effect occurs directly. Related to this, the results show that perceived ease of use and perceived usefulness have a significant direct effect on computer anxiety in command-line interface users, but no effect at all for graphical interface users. Of the two exogenous variables only perceived ease of use, and that in the case of the command-line interface users, has a direct significant effect on extent of use of microcomputers. In summary, the research has contributed to the development of a theory of individual adjustment to information technology in the workplace. It identifies certain perceptions, anxieties and attitudes about microcomputers and shows how they may affect work outcomes such as job satisfaction and job performance. It also shows that microcomputer-interface types have a differential effect on some of the hypothesised relationships represented in the general model. Future replication studies could sample a broader cross-section of the microcomputer user community. Finally, the results should help Big Six accounting firms to maximise the benefits of microcomputer use by making them aware of how working with microcomputers affects job satisfaction and job performance

    COMMUNICATION INTERFACE PROXIMITY AND USER ANXIETY: COMPARING DESKTOP, LAPTOP, AND HAND-HELD DEVICES AS MEDIA PLATFORMS FOR EMERGENCY ALERTS

    Get PDF
    This study is an experiment investigating the effects of communication interface proximity on college students' anxiety when they receive the alerts about on-campus crimes via e-mails and text messages. It proposes a new dimension for the traditional concept of proximity in journalism and suggests a shift in the emphasis of proximity from audience-to-event to user-to-interface. It draws the theoretical framework from multiple disciplines: human-computer interaction research, the information processing model, media effects research, as well as the psychological research of anxiety. A total of 97 college students in a large mid-Atlantic university participated in this experiment. Communication interface proximity was conceptualized as three different media platforms: desktop computer (stationary), laptop computer (portable), and hand-held device (mobile). The students were assigned to one of the three device groups based on their self-reported computer usage and received four crime alerts per day for two days through one of the devices. They were required to carry a Self-Assessment Manikin (SAM) pictorial scale during the experiment and reply to the alerts as soon as possible using the SAM and felt anxiety scales. They also filled out an online questionnaire at the beginning of the study, at the end of the first day, and at the end of the study, respectively. Subjects who received the crime alerts on hand-held devices reported higher anxiety upon alert receipt than those receiving the alerts on desktop or laptop computers. Anxiety, valence, and arousal reported upon alert receipt for the laptop and desktop groups decreased significantly in early day two, suggesting an "overnight effect" of the crime alerts on these two groups. However, the hand-held group still reported a high level of anxiety upon alert receipt in early day two, suggesting the ubiquitous hand-held device is just under our skin, with no "down time". This study also found that anxiety predicted latency time of response to the alerts and memory for the crime alerts, indicating that anxiety serves as an adaptive heuristic in an emergency and helps people allocate their limited cognitive mental resources, as suggested by the information processing model

    Techno-Apocalypse: Technology, Religion, and Ideology in Bryan Singer’s H+

    Get PDF
    This essay critically analyses the digital series H+. In the near future, adults who can afford them, have replaced tablets and cell phones with nanotechnology implants. The H+ implant acts as a medical diagnostic and can overlay the user\u27s senses with a computer interface. The apocalypse comes in the form of a computer virus which infects the H+ network and instantly kills one third of humanity. The series represents the anxiety and religiosity that surrounds the possible social consequences of digital technology. It also explores the tensions and intersections between technology and faith. This essay makes the case, however, that H+ is grounded in the rhetoric of the technological sublime and, as a result, it offers only a narrow interpretation of faith and technology at the expense of an exploration of society, culture and what it is to be human

    Envisioning Future Playful Interactive Environments for Animals

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-981-287-546-4_6Play stands as one of the most natural and inherent behavior among the majority of living species, specifically humans and animals. Human play has evolved significantly over the years, and so have done the artifacts which allow us to play: from children playing tag games without any tools other than their bodies, to modern video games using haptic and wearable devices to augment the playful experience. However, this ludic revolution has not been the same for the humans’ closest companions, our pets. Recently, a new discipline inside the human–computer interaction (HCI) community, called animal–computer interaction (ACI), has focused its attention on improving animals’ welfare using technology. Several works in the ACI field rely on playful interfaces to mediate this digital communication between animals and humans. Until now, the development of these interfaces only comprises a single goal or activity, and its adaptation to the animals’ needs requires the developers’ intervention. This work analyzes the existing approaches, proposing a more generic and autonomous system aimed at addressing several aspects of animal welfare at a time: Intelligent Playful Environments for Animals. The great potential of these systems is discussed, explaining how incorporating intelligent capabilities within playful environments could allow learning from the animals’ behavior and automatically adapt the game to the animals’ needs and preferences. The engaging playful activities created with these systems could serve different purposes and eventually improve animals’ quality of life.This work was partially funded by the Spanish Ministry of Science andInnovation under the National R&D&I Program within the projects Create Worlds (TIN2010-20488) and SUPEREMOS (TIN2014-60077-R), and from Universitat Politècnica de València under Project UPV-FE-2014-24. It also received support from a postdoctoral fellowship within theVALi+d Program of the Conselleria d’Educació, Cultura I Esport (Generalitat Valenciana) awarded to Alejandro Catalá (APOSTD/2013/013). The work of Patricia Pons has been supported by the Universitat Politècnica de València under the “Beca de Excelencia” program and currently by an FPU fellowship from the Spanish Ministry of Education, Culture, and Sports (FPU13/03831).Pons Tomás, P.; Jaén Martínez, FJ.; Catalá Bolós, A. (2015). Envisioning Future Playful Interactive Environments for Animals. En More Playful User Interfaces: Interfaces that Invite Social and Physical Interaction. Springer. 121-150. https://doi.org/10.1007/978-981-287-546-4_6S121150Alfrink, K., van Peer, I., Lagerweij H, et al.: Pig Chase. Playing with Pigs project. (2012) www.playingwithpigs.nlAmat, M., Camps, T., Le, Brech S., Manteca, X.: Separation anxiety in dogs: the implications of predictability and contextual fear for behavioural treatment. Anim. Welf. 23(3), 263–266 (2014). doi: 10.7120/09627286.23.3.263Barker, S.B., Dawson, K.S.: The effects of animal-assisted therapy on anxiety ratings of hospitalized psychiatric patients. Psychiatr. Serv. 49(6), 797–801 (1998)Bateson, P., Martin, P.: Play, Playfulness, Creativity and Innovation. Cambridge University Press, New York (2013)Bekoff, M., Allen, C.: Intentional communication and social play: how and why animals negotiate and agree to play. In: Bekoff, M., Byers, J.A. (eds.) Animal Play Evolutionary. Comparative and Ecological Perspectives, pp. 97–114. Cambridge University Press, New York (1997)Burghardt, G.M.: The Genesis of Animal Play. Testing the Limits. MIT Press, Cambridge (2006)Catalá, A., Pons, P., Jaén, J., et al.: A meta-model for dataflow-based rules in smart environments: evaluating user comprehension and performance. Sci. Comput. Prog. 78(10), 1930–1950 (2013). doi: 10.1016/j.scico.2012.06.010Cheok, A.D., Tan, R.T.K.C., Peiris, R.L., et al.: Metazoa ludens: mixed-reality interaction and play for small pets and humans. IEEE Trans. Syst. Man. Cybern.—Part A Syst. Hum. 41(5), 876–891 (2011). doi: 10.1109/TSMCA.2011.2108998Costello, B., Edmonds, E.: A study in play, pleasure and interaction design. In: Proceedings of the 2007 Conference on Designing Pleasurable Products and Interfaces, pp. 76–91 (2007)Csikszentmihalyi, M.: Beyond Boredom and Anxiety. The Experience of Play in Work and Games. Jossey-Bass Publishers, Hoboken (1975)Filan, S.L., Llewellyn-Jones, R.H.: Animal-assisted therapy for dementia: a review of the literature. Int. Psychogeriatr. 18(4), 597–611 (2006). doi: 10.1017/S1041610206003322García-Herranz, M., Haya, P.A., Alamán, X.: Towards a ubiquitous end-user programming system for smart spaces. J. Univ. Comput. Sci. 16(12), 1633–1649 (2010). doi: 10.3217/jucs-016-12-1633Hirskyj-Douglas, I., Read, J.C.: Who is really in the centre of dog computer interaction? In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Hu, F., Silver, D., Trude, A.: LonelyDog@Home. In: International Conference Web Intelligence Intelligent Agent Technology—Workshops, 2007 IEEE/WIC/ACM IEEE, pp. 333–337, (2007)Huizinga, J.: Homo Ludens. Wolters-Noordhoff, Groningen (1985)Kamioka, H., Okada, S., Tsutani, K., et al.: Effectiveness of animal-assisted therapy: a systematic review of randomized controlled trials. Complement. Ther. Med. 22(2), 371–390 (2014). doi: 10.1016/j.ctim.2013.12.016Lee, S.P., Cheok, A.D., James, T.K.S., et al.: A mobile pet wearable computer and mixed reality system for human–poultry interaction through the internet. Pers. Ubiquit. Comput. 10(5), 301–317 (2006). doi: 10.1007/s00779-005-0051-6Leo, K., Tan, B.: User-tracking mobile floor projection virtual reality game system for paediatric gait and dynamic balance training. In: Proceedings of the 4th International Convention on Rehabilitation Engineering and Assistive Technology pp. 25:1–25:4 (2010)Mancini, C.: Animal-computer interaction: a manifesto. Mag. Interact. 18(4), 69–73 (2011). doi: 10.1145/1978822.1978836Mancini, C.: Animal-computer interaction (ACI): changing perspective on HCI, participation and sustainability. CHI ’13 Extended Abstracts on Human Factors in Computing Systems. ACM Press, New York, pp. 2227–2236 (2013)Mancini, C., van der Linden, J.: UbiComp for animal welfare: envisioning smart environments for kenneled dogs. In: Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 117–128 (2014)Mancini, C., Harris, R., Aengenheister, B., Guest, C.: Re-centering multispecies practices: a canine interface for cancer detection dogs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing System, pp. 2673–2682 (2015)Mancini, C., van der Linden, J., Bryan, J., Stuart, A.: Exploring interspecies sensemaking: dog tracking semiotics and multispecies ethnography. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing—UbiComp ’12. ACM Press, New York, pp. 143–152 (2012)Mankoff, D., Dey, A.K., Mankoff, J., Mankoff, K.: Supporting interspecies social awareness: using peripheral displays for distributed pack awareness. In: Proceedings of the 18th Annual ACM Symposium on User interface Software and Technology, pp. 253–258 (2005)Maternaghan, C., Turner, K.J.: A configurable telecare system. In: Proceedings of the 4th International Conference on Pervasive Technologies Related to Assistive Environments—PETRA ’11. ACM Press, New York, pp. 14:1–14:8 (2011)Matsuzawa, T.: The Ai project: historical and ecological contexts. Anim. Cogn. 6(4), 199–211 (2003). doi: 10.1007/s10071-003-0199-2McGrath, R.E.: Species-appropriate computer mediated interaction. CHI ‘09 Extended Abstracts on Human Factors in Computing Systems. ACM Press, New York, pp. 2529–2534 (2009)Mocholí, J.A., Jaén, J., Catalá, A.: A model of affective entities for effective learning environments. In: Innovations in Hybrid Intelligent Systems, pp. 337–344 (2007)Nijholt, A. (ed.): Playful User Interfaces. Springer, Singapore (2014)Norman, D.A.: The invisible computer. MIT Press, Cambridge (1998)Noz, F., An, J.: Cat cat revolution: an interspecies gaming experience. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2661–2664 (2011)Paldanius, M., Kärkkäinen, T., Väänänen-Vainio-Mattila, K., et al.: Communication technology for human-dog interaction: exploration of dog owners’ experiences and expectations. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, New York, pp. 2641–2650 (2011)Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)Pons, P., Jaén, J., Catalá, A.: Animal ludens: building intelligent playful environments for animals. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Resner, B.: Rover@Home: Computer Mediated Remote Interaction Between Humans and Dogs. M.Sc. thesis, Massachusetts Institute of Technology, Cambridge (2001)Ritvo, S.E., Allison, R.S.: Challenges related to nonhuman animal-computer interaction: usability and “liking”. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Robinson, C., Mncini, C., Van Der Linden, J., et al.: Canine-centered interface design: supporting the work of diabetes alert dogs. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3757–3766 (2014)Rumbaugh, D.M.: Language Learning by a Chimpanzee: The LANA Project. Academic Press, New York (1977)Rumbaugh, D.M.: Apes and their future in comparative psychology. Eye Psi Chi 18(1), 16–19 (2013)Rumbaugh, D.M., Gill, T.V., Brown, J.V., et al.: A computer-controlled language training system for investigating the language skills of young apes. Behav. Res. Methods Instrum. 5(5), 385–392 (1973)Schwartz, S.: Separation anxiety syndrome in cats: 136 cases (1991–2000). J. Am. Vet. Med. Assoc. 220(7), 1028–1033 (2002). doi: 10.2460/javma.2002.220.1028Schwartz, S.: Separation anxiety syndrome in dogs and cats. J. Am. Vet. Med. Assoc. 222(11), 1526–1532 (2003)Solomon, O.: What a dog can do: children with autism and therapy dogs in social interaction. Ethos J. Soc. Psychol. Anthropol. 38(1), 143–166 (2010). doi: 10.1111/j.1548-1352.2010.01085.xTeh, K.S., Lee, S.P., Cheok, A.D.: Poultry. Internet: a remote human-pet interaction system. In: CHI ’06 Extended Abstracts on Human Factors in Computing Systems, pp. 251–254 (2006)Väätäjä, H., Pesonen, E.: Ethical issues and guidelines when conducting HCI studies with animals. In: CHI ’13 Extended Abstracts on Human Factors in Computing Systems, pp. 2159–2168 (2013)Väätäjä, H.: Animal welfare as a design goal in technology mediated human-animal interaction—opportunities with haptics. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Weilenmann, A., Juhlin, O.: Understanding people and animals. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems—CHI ’11. ACM Press, New York, pp. 2631–2640 (2011)Weiser, M.: The computer for the 21st century. Sci. Am. 265(3), 94–104 (1991)Westerlaken, M., Gualeni, S., Geurtsen, A.: Grounded zoomorphism: an evaluation methodology for ACI design. In: Adjunct Proceedings of the 11th Conference on Advances in Computer Entertainment—Workshop on Animal Human Computer Interaction (2014)Westerlaken, M., Gualeni, S.: Felino: the philosophical practice of making an interspecies videogame. Philosophy of Computer Games Conference, pp. 1–12 (2014)Wingrave, C.A., Rose, J., Langston, T., LaViola, J.J.J.: Early explorations of CAT: canine amusement and training. In: CHI ’10 Extended Abstracts on Human Factors in Computing Systems, pp. 2661–2669 (2010

    A Review on Speech Emotion Recognition

    Get PDF
    Emotion recognition from Audio signal Recognition is a recent research topic in the Human Computer Interaction. The demand has risen for increasing communication interface between humans and digital media. Many researchers are working in order to improve their accuracy. But still there is lack of complete system which can recognize emotions from speech. In order to make the human and digital machine interaction more natural, the computer should able to recognize emotional states in the same way as human. The efficiency of emotion recognition system depends on type of features extracted and classifier used for detection of emotions. There are some fundamental emotions such as: Happy, Angry, Sad, Depressed, Bored, Anxiety, Fear and Nervous. These signals were preprocessed and analyzed using various techniques. In feature extraction various parameters used to form a feature vector are: fundamental frequency, pitch contour, formants, duration (pause length ratio) etc. These features are further classified into different emotions. This research work is the study of speech emotion classification addressing three important aspects of the design of a speech emotion recognition system. The first one is the choice of suitable features for speech representation. The second issue is the design of an appropriate classification scheme and the third issue is the proper preparation of an emotional speech database for evaluating system performanc

    Visual Anxiolytics: developing theory and design guidelines for abstract affective visualizations aimed at alleviating episodes of anxiety

    Get PDF
    Visual Anxiolytics is a novel term proposed to describe affective visualizations of which affective quality is predetermined and designed to alleviate anxiety and anxious pathology. This thesis presents ground theory and visual guidelines to inform the design of screen-based interfaces to give users aspects of a restorative and anxiolytic environment at a time when attention restoration is least likely and anxiety highly probable; during sedentary screen-time. Visual Anxiolytics are introduced as an affective layer of the interface capable of communicating affect through aesthetic, abstract, ambient emotion visualizations existing in the periphery of the screen and users’ vision. Their theory is brought into the field of Visual Communication Design from a number of disciplines; primarily Affective Computing, Human-Computer Interaction, Psychology, and Neuroscience. Visual Anxiolytics attempt to alleviate anxiety through restoration of attentional cognitive resources by rendering the digital environment restorative and by elicitation of positive emotions through affect communication. Design guidelines analyse and describe properties of anxiolytic affective visual attributes color, shape, motion, and visual depth, as well as compositional characteristics of Visual Anxiolytics. Potential implications for future research in emotion visualization and affect communication are discussed

    The responses of people to virtual humans in an immersive virtual environment

    Get PDF
    This paper presents an experiment investigating the impact of behavior and responsiveness on social responses to virtual humans in an immersive virtual environment (IVE). A number of responses are investigated, including presence, copresence, and two physiological responses—heart rate and electrodermal activity (EDA). Our findings suggest that increasing agents’ responsiveness even on a simple level can have a significant impact on certain aspects of people’s social responses to humanoid agents. Despite being aware that the agents were computer-generated, participants with higher levels of social anxiety were significantly more likely to avoid “disturbing” them. This suggests that on some level people can respond to virtual humans as social actors even in the absence of complex interaction. Responses appear to be shaped both by the agents’ behaviors and by people’s expectations of the technology. Participants experienced a significantly higher sense of personal contact when the agents were visually responsive to them, as opposed to static or simply moving. However, this effect diminished with experienced computer users. Our preliminary analysis of objective heart-rate data reveals an identical pattern of responses

    Sustainability, transport and design: reviewing the prospects for safely encouraging eco-driving

    No full text
    Private vehicle use contributes a disproportionately large amount to the degradation of the environment we inhabit. Technological advancement is of course critical to the mitigation of climate change, however alone it will not suffice; we must also see behavioural change. This paper will argue for the application of Ergonomics to the design of private vehicles, particularly low-carbon vehicles (e.g. hybrid and electric), to encourage this behavioural change. A brief review of literature is offered concerning the effect of the design of a technological object on behaviour, the inter-related nature of goals and feedback in guiding performance, the effect on fuel economy of different driving styles, and the various challenges brought by hybrid and electric vehicles, including range anxiety, workload and distraction, complexity, and novelty. This is followed by a discussion on the potential applicability of a particular design framework, namely Ecological Interface Design, to the design of in-vehicle interfaces that encourage energy-conserving driving behaviours whilst minimising distraction and workload, thus ensuring safety

    Computational Music Biofeedback for Stress Relief

    Get PDF
    The purpose of our project is to use EEG technology to combat stress in our daily lives. One of the most accessible EEG technologies that targets this challenge is the Muse headband, a wearable device that pairs with a phone application to help users train their brains to relax. The applications main goal is to help users train their brain to be more relaxed by monitoring and reporting their levels of stress. However, one of the shortcomings we noticed is that the constant notifications of how stressed we are actually adds to the level of stress as opposed to helping train our brains towards a more relaxed state. In order to improve this solution, our program uses the live brain waves transmitted by the Muse headband and feedforward techniques to not only track brain users activity, but also help the user move towards a more relaxed state using music and binaural beats. While we werent able to test the system on an unbiased population due to time constraints, preliminary exploration on ourselves on both short term and longer term sessions shows that longer uses of our system led to more a relaxed state

    A Virtual Conversational Agent for Teens with Autism: Experimental Results and Design Lessons

    Full text link
    We present the design of an online social skills development interface for teenagers with autism spectrum disorder (ASD). The interface is intended to enable private conversation practice anywhere, anytime using a web-browser. Users converse informally with a virtual agent, receiving feedback on nonverbal cues in real-time, and summary feedback. The prototype was developed in consultation with an expert UX designer, two psychologists, and a pediatrician. Using the data from 47 individuals, feedback and dialogue generation were automated using a hidden Markov model and a schema-driven dialogue manager capable of handling multi-topic conversations. We conducted a study with nine high-functioning ASD teenagers. Through a thematic analysis of post-experiment interviews, identified several key design considerations, notably: 1) Users should be fully briefed at the outset about the purpose and limitations of the system, to avoid unrealistic expectations. 2) An interface should incorporate positive acknowledgment of behavior change. 3) Realistic appearance of a virtual agent and responsiveness are important in engaging users. 4) Conversation personalization, for instance in prompting laconic users for more input and reciprocal questions, would help the teenagers engage for longer terms and increase the system's utility
    • …
    corecore