12 research outputs found

    Height inspection of wafer bumps without explicit 3D reconstruction.

    Get PDF
    by Dong, Mei.Thesis (M.Phil.)--Chinese University of Hong Kong, 2007.Includes bibliographical references (leaves 83-90).Abstracts in English and Chinese.INTRODUCTION --- p.1Chapter 1.1 --- Bump Height Inspection --- p.1Chapter 1.2 --- Our Height Inspection System --- p.2Chapter 1.3 --- Thesis Outline --- p.3BACKGROUND --- p.5Chapter 2.1 --- Wafer Bumps --- p.5Chapter 2.2 --- Common Defects of Wafer Bumps --- p.7Chapter 2.3 --- Traditional Methods for Bump Inspection --- p.11BIPLANAR DISPARITY METHOD --- p.22Chapter 3.1 --- Problem Nature --- p.22Chapter 3.2 --- System Overview --- p.25Chapter 3.3 --- Biplanar Disparity Matrix D --- p.30Chapter 3.4 --- Planar Homography --- p.36Chapter 3.4.1 --- Planar Homography --- p.36Chapter 3.4.2 --- Homography Estimation --- p.39Chapter 3.5 --- Harris Corner Detector --- p.45Chapter 3.6 --- Experiments --- p.47Chapter 3.6.1 --- Synthetic Experiments --- p.47Chapter 3.6.2 --- Real image experiment --- p.52Chapter 3.7 --- Conclusion and problems --- p.61PARAPLANAR DISPARITY METHOD --- p.62Chapter 4.1 --- The Parallel Constraint --- p.63Chapter 4.2 --- Homography estimation --- p.66Chapter 4.3. --- Experiment: --- p.69Chapter 4.3.1 --- Synthetic Experiment: --- p.69Chapter 4.3.2 --- Real Image Experiment: --- p.74CONCLUSION AND FUTURE WORK --- p.80Chapter 5.1 --- Summary of the contributions --- p.80Chapter 5.2 --- Future Work --- p.81Publication related to this work: --- p.83BIBLIOGRAPHY --- p.8

    Eight Biennial Report : April 2005 – March 2007

    No full text

    Efficacy and pharmacokinetics of intravenous paracetamol in the critically ill patient

    Get PDF
    Introduction: Paracetamol (PCM) is a drug with analgesic and antipyretic properties. Despite its frequent use, little is known about its efficacy and pharmacokinetics (PK) when intravenously administered in the critically ill patient. A previous study suggests that therapeutic concentrations are not always reached [1]. The primary aim of this open-label, multiple-dose study was to evaluate intravenous PCM therapy in critically ill, secondary aim was to study the PK of intravenous PCM. Methods: Ventilated patients needing PCM treatment according to our ICU protocol (1 g PCM intravenously four times daily) were eligible for inclusion. Excluded were those with severe liver failure and those treated with PCM on the time of admission to the ICU. Blood samples were collected at 0, 30, 60, 180 and 300 minutes after the first and, if possible, the fifth and 21st doses. A computerized model was used to estimate population PK. Results: Nineteen patients were included of which 13 were male, with a mean APACHE IV score of 94.8. No antipyretic effect could be measured in any of the patients. PK parameters have been calculated for all patients after the first PCM dose. The half-life was 2.2 hours, the volume of distribution was 1.03 l/kg, and the clearance was 0.33 l/kg/hour. Data from 15 patients could be analysed after the fifth dose and from five patients after the 21st dose. The PK of intravenous PCM in our population show a biphasic profile (Figure 1). One hour after the dose, the mean serum concentration level was below the therapeutic level. In 18 out of 19 patients serum concentration dropped below 5 mg/ml before the next dose, resulting in a lack of build-up of a suitable therapeutic level of PCM after multiple dosages. Conclusions: The recommended dose of 1 g intravenous PCM four times daily is not sufficient to achieve a therapeutic effect in critically ill patients. This can be explained by the low serum levels reached. These results warrant the development of an adequate dosing scheme for intravenous PCM followed by a large clinical trial studying the effects and safety of this regimen in critically ill patients
    corecore