12,814 research outputs found

    EPR Methods for Biological Cu(II): L-Band CW and NARS

    Get PDF
    Abstract: Copper has many roles in biology that involve the change of coordination sphere and/or oxidation state of the copper ion. Consequently, the study of copper in heterogeneous environments is an important area in biophysics. EPR is a primary technique for the investigation of paramagnetic copper, which is usually the isolated Cu(II) ion, but sometimes as Cu(II) in different oxidation states of multitransition ion clusters. The gross geometry of the coordination environment of Cu(II) can often be determined from a simple inspection of the EPR spectrum, recorded in the traditional X-band frequency range (9–10 GHz). Identification and quantitation of the coordinating ligand atoms, however, is not so straightforward. In particular, analysis of the superhyperfine structure on the EPR spectrum, to determine the number of coordinated nitrogen atoms, is fraught with difficulty at X-band, despite the observation that the overwhelming number of EPR studies of Cu(II) in the literature have been carried out at X-band. Greater reliability has been demonstrated at S-band (3–4 GHz), using the low-field parallel (gz) features. However, analysis relies on clear identification of the outermost superhyperfine line, which has the lowest intensity of all the spectral features. Computer simulations have subsequently indicated that the much more intense perpendicular region of the spectrum can be reliably interpreted at L-band (2 GHz). The present work describes the development of L-band EPR of Cu(II) into a routine method that is applicable to biological samples

    High Resolution Microimaging with Pulsed Electrically-Detected Magnetic Resonance

    Full text link
    The investigation of paramagnetic species (such as point defects, dopants, and impurities) in solid-state electronic devices is significant because of their effect on device performance. Conventionally, these species are detected and imaged using the electron spin resonance (ESR) technique. In many instances, ESR is not sensitive enough to deal with miniature devices having small numbers of paramagnetic species and high spatial heterogeneity. This limitation can in principle be overcome by employing a more sensitive method called electrically-detected magnetic resonance, which is based on measuring the effect of paramagnetic species on the electric current of the device while inducing electron spin-flip transitions. However, up until now, measurement of the current of the device could not reveal the spatial heterogeneity of its paramagnetic species. We provide here, for the first time, high resolution microimages of paramagnetic species in operating solar cells obtained through electrically-detected magnetic resonance. The method is based on unique microwave pulse sequences for excitation and detection of the electrical signal under a static magnetic field and powerful pulsed magnetic field gradients that spatially encode the electrical current of the sample. The approach developed here can be widely used in the nondestructive three-dimensional inspection and characterization of paramagnetic species in a variety of electronic devices.Comment: 19 pages, 4 figures +S

    Potentially Diagnostic Electron Paramagnetic Resonance Spectra Elucidate the Underlying Mechanism of Mitochondrial Dysfunction in the Deoxyguanosine Kinase Deficient Rat Model of a Genetic Mitochondrial DNA Depletion Syndrome

    Get PDF
    A novel rat model for a well-characterized human mitochondrial disease, mitochondrial DNA depletion syndrome with associated deoxyguanosine kinase (DGUOK) deficiency, is described. The rat model recapitulates the pathologic and biochemical signatures of the human disease. The application of electron paramagnetic (spin) resonance (EPR) spectroscopy to the identification and characterization of respiratory chain abnormalities in the mitochondria from freshly frozen tissue of the mitochondrial disease model rat is introduced. EPR is shown to be a sensitive technique for detecting mitochondrial functional abnormalities in situ and, here, is particularly useful in characterizing the redox state changes and oxidative stress that can result from depressed expression and/or diminished specific activity of the distinct respiratory chain complexes. As EPR requires no sample preparation or non-physiological reagents, it provides information on the status of the mitochondrion as it was in the functioning state. On its own, this information is of use in identifying respiratory chain dysfunction; in conjunction with other techniques, the information from EPR shows how the respiratory chain is affected at the molecular level by the dysfunction. It is proposed that EPR has a role in mechanistic pathophysiological studies of mitochondrial disease and could be used to study the impact of new treatment modalities or as an additional diagnostic tool

    Biocompatible Copper Oxide Nanoparticle Composites from Cellulose and Chitosan: Facile Synthesis, Unique Structure, and Antimicrobial Activity

    Get PDF
    Copper in various forms has been known to have bactericidal activity. Challenges to its application include preventing mobilization of the copper, to both extend activity and avoid toxicity, and bioincompatibility of many candidate substrates for copper immobilization. Using a simple ionic liquid, butylmethylimmidazolium chloride as the solvent, we developed a facile and green method to synthesize biocompatible composites containing copper oxide nanoparticles (CuONPs) from cellulose (CEL) and chitosan (CS) or CEL and keratin (KER). Spectroscopy and imaging results indicate that CEL, CS, and KER remained chemically intact and were homogeneously distributed in the composites with CuONPs with size of 22 ± 1 nm. Electron paramagnetic resonance (EPR) suggests that some 25% of the EPR-detectable Cu(II) is present as a monomeric species, chemically anchored to the substrate by two or more nitrogen atoms, and, further, adopts a unique spatially oriented conformation when incorporated into the [CEL + CS] composite but not in the [CEL + KER] composite. The remaining 75% of EPR-detectable Cu(II) exhibited extensive spin–spin interactions, consistent with Cu(II) aggregates and Cu(II) on the surface of CuONPs. At higher levels of added copper (\u3e59 nmol/mg), the additional copper was EPR-silent, suggesting an additional phase in larger CuONPs, in which S \u3e 0 spin states are either thermally inaccessible or very fast-relaxing. These data suggest that Cu(II) initially binds substrate via nitrogen atoms, from which CuONPs develop through aggregation of copper. The composites exhibited excellent antimicrobial activity against a wide range of bacteria and fungi, including methicillin-resistant Staphylococcus aureus; vancomycin-resistant Enterococcus; and highly resistant Escherichia coli, Streptococcus agalactiae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, and Candida albicans. Expectedly, the antibacterial activity was found to be correlated with the CuONPs content in the composites. More importantly, at CuONP concentration of 35 nmol/mg or lower, bactericidal activity of the composite was complemented by its biocompatibility with human fibroblasts

    Intervalence (Charge-Resonance) Transitions in Organic Mixed-Valence Systems. Through-Space versus Through-Bond Electron Transfer between Bridged Aromatic (Redox) Centers

    Get PDF
    Intervalence absorption bands appearing in the diagnostic near-IR region are consistently observed in the electronic spectra of mixed-valence systems containing a pair of aromatic redox centers (Ar•+/Ar) that are connected by two basically different types of molecular bridges. The through-space pathway for intramolecular electron transfer is dictated by an o-xylylene bridge in the mixed-valence cation radical 3•+ with Ar = 2,5-dimethoxy-p-tolyl (T), in which conformational mobility allows the proximal syn disposition of planar T•+/T redox centers. Four independent experimental probes indicate the large through-space electronic interaction between such cofacial Ar•+/Ar redox centers from the measurements of (a) sizable potential splitting in the cyclic voltammogram, (b) quinonoidal distortion of T•+/T centers by X-ray crystallography, (c) “doubling” of the ESR hyperfine splittings, and (d) a pronounced intervalence charge-resonance band. The through (br)-bond pathway for intramolecular electron transfer is enforced in the mixed-valence cation radical 2a•+ by the p-phenylene bridge which provides the structurally inflexible and linear connection between Ar•+/Ar redox centers. The direct comparison of intramolecular rates of electron transfer (kET) between identical T•+/T centers in 3•+ and 2a•+indicates that through-space and through-bond mechanisms are equally effective, despite widely different separations between their redox centers. The same picture obtains for 3•+ and 2a•+from theoretical computations of the first-order rate constants for intramolecular electron transfer from Marcus−Hush theory using the electronic coupling elements evaluated from the diagnostic intervalence (charge-transfer) transitions. Such a strong coherence between theory and experiment also applies to the mixed-valence cation radical 7•+, in which the aromatic redox S center is sterically encumbered by annulation

    Superhyperfine interactions in Ce3+ doped LiYF4 crystal: ENDOR measurements

    Full text link
    The first observation of the resolved Mims electron-nuclear double resonance (ENDOR) spectra from the nearby and remote nuclei of 19F and 7Li nuclei on impurity Ce3+ ions in LiYF4 crystal is reported. It shows that LiYF4:Ce3+ system can be exploited as a convenient matrix for performing spin manipulations and adjusting quantum computation protocols while ENDOR technique could be used for the investigation of electron-nuclear interaction with all the nuclei of the system and exploited for the electron-nuclear spin manipulations.Comment: 4 pages, 2 figures, 1 Table. Reported on Theor-2017 (Kazan, Russia) Conferenc

    Unconventional magnetism of non-uniform distribution of Co in TiO2 nanoparticles

    Get PDF
    High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD) analysis, electron paramagnetic resonance (EPR), X-ray absorption spectroscopy (XAS), magnetic methods, and density-functional theory (DFT) calculations were applied for the investigations of Co-doped anatase TiO2 nanoparticles (∼20 nm). It was found that high-spin Co2+ ions prefer to occupy the interstitial positions in the TiO2 lattice which are the most energetically favourable in compare to the substitutional those. A quantum mechanical model which operates mainly on two types of Co2+ – Co2+ dimers with different negative exchange interactions and the non-interacting paramagnetic Co2+ ions provides a satisfactorily description of magnetic properties for the TiO2:Co system. © 2020 Elsevier B.V.Russian Foundation for Basic Research. Ministry of Science and Higher Education of the Russian Federatio

    EPR of Cu\u3csup\u3e2+\u3c/sup\u3e Prion Protein Constructs at 2 GHz Using the \u3cem\u3eg\u3c/em\u3e\u3csub\u3e⊥\u3c/sub\u3e Region to Characterize Nitrogen Ligation

    Get PDF
    A double octarepeat prion protein construct, which has two histidines, mixed with copper sulfate in a 3:2 molar ratio provides at most three imidazole ligands to each copper ion to form a square-planar Cu2+ complex. This work is concerned with identification of the fourth ligand. A new (to our knowledge) electron paramagnetic resonance method based on analysis of the intense features of the electron paramagnetic resonance spectrum in the g⊥ region at 2 GHz is introduced to distinguish between three and four nitrogen ligands. The methodology was established by studies of a model system consisting of histidine imidazole ligation to Cu2+. In this spectral region at 2 GHz (S-band), g-strain and broadening from the possible rhombic character of the Zeeman interaction are small. The most intense line is identified with the MI = +1/2 extra absorption peak. Spectral simulation demonstrated that this peak is insensitive to cupric Ax and Ay hyperfine interaction. The spectral region to the high-field side of this peak is uncluttered and suitable for analysis of nitrogen superhyperfine couplings to determine the number of nitrogens. The spectral region to the low-field side of the intense extra absorption peak in the g⊥ part of the spectrum is sensitive to the rhombic distortion parameters Ax and Ay. Application of the method to the prion protein system indicates that two species are present and that the dominant species contains four nitrogen ligands. A new loop-gap microwave resonator is described that contains ∼1 mL of frozen sample
    corecore