125 research outputs found

    Formation of structural matrices for finite elements of piezoceramic structures

    Get PDF
    This paper deals with the description of a theoretical background of systematic computer algebra methods for the formation of structural matrices of piezoceramic finite elements. Piezoceramic actuators are widely used for high-precision mechanical systems such as positioning devices, manipulating systems, control equipment, etc. In this paper, the efficiency of computer algebra application was compared with the numerical integration methods of formation of the structural matrices of the finite elements. Two popular finite elements are discussed for modeling piezoceramic actuators: sector type and the triangular one. All structural matrices of the elements were derived using the computer algebra technique with the following automatic program code generation. Due to smaller floating point operations, the computer time economy is followed by an increased accuracy of computations, which is the most important gain achieved in many cases

    Development of two modifications of piezoelectric high resolution rotary table

    Get PDF
    The aim of this paper is to describe two modifications of high resolution rotary tables with angular position control, based on the transformation of resonant oscillations of piezoelectric transducers into continuous or start-stop motion. Exact angular position of the table is achieved by application of integrated classical rotary position encoders and feedback system, related to the given position or angular velocity of the device. Dimensions and cost of the table should be dramatically reduced, thus ensuring competitiveness in modern markets

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    Summary of research in progress at ICASE

    Get PDF
    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1992 through March 31, 1993

    Pjezorobotų trajektorijų valdymas nanopalydovų stabilizavimui

    Get PDF
    Rapid industrial advancement requires novel ideas, new scientific approaches and effective technologies that would ensure quality and precision. Application of piezoelectric actuators in robotics opens many possibilities to create systems with extreme precision and control. A very important step in the development of autonomous robots is the formation of motion trajectories. Classical interpolation methods used for formation of the trajectories are suitable only when robots have wheels, legs or other parts for motion transmission. Piezorobots that are analyzed in this dissertation have no additional components that create motion, only contact points with the static plane. Therefore, traditional motion formation methods are not suitable and a problem arises how to define motion trajectory of such device. The aim of this work is to create a trajectory control algorithm of multi-degrees-of-freedom piezorobot used for nanosatellite stabilization. In order to achieve the objective, the following tasks had to be solved: to analyze constructions of precise piezorobots, their operating principles and motion formation methods; to analyze stabilization problems of satellites and application of multi-degrees-of-freedom piezorobots for nanosatellite stabilization; to create piezorobots’ motion formation algorithms according to electrode excitation schemes, to perform an experimental research; to determine quantitative characteristics of the constructed piezorobots and their motion trajectories. The introduction describes the importance and novelty of this thesis, goals of this work, its practical value and defended statements. The first chapter analyses the principals of ultrasonic devices, gives a thorough review of constructions of ultrasonic devices with multi-degrees-of-freedom. The second chapter provides a review of satellite stabilization principles and how multi-degrees-of-freedom piezorobots can be applied for nanosatellite stabilization. Motion formation methods for ultrasonic devices with multi-degrees-of-freedom are presented. The third chapter presents the detailed analysis of different piezorobots. In the fourth chapter experimental results are provided. Trajectory planning of piezorobot is shown, results are compared to numerical calculations performed in the third chapter. The conclusions about applicability of piezorobots’ motion formation algorithms according to electrode excitation schemes are given. Seven articles focusing on the subject of the dissertation have been published, two presentations on the subject have been presented in conferences at international level. The research for the dissertation has been funded by the Lithuanian State Science and Studies Foundation: European Regional Development Fund, Project No. DOTSUT-234 and Research Council of Lithuania, Project No. MIP-084/2015.Dissertatio

    Optimal sensor/actuator placement and switching schemes for control of flexible structures

    Get PDF
    The vibration control problem for flexible structures is examined within the context of overall controller performance and power reduction. First, the issue of optimal sensor and actuator placement is considered along with its associated control robustness aspects. Then the option of alternately activating subsets of the available devices is investigated. Such option is considered in order to better address the effects of spatiotemporally varying disturbances acting on a flexible structure while reducing the overall energy consumption. Towards the solution to the problem of optimal device placement, three different approaches are proposed. First, a computationally efficient scheme for the simultaneous placement of multiple devices is presented. The second approach proposes a strategy for the optimal placement of sensors and collocated sensor/actuator pairs, taking into account the influence of the spatial distribution of disturbances. The third approach provides a solution to the actuator location problem by incorporating considerations with respect to preferred spatial regions within the flexible structure. Then the second problem named above is considered. Activating a subset of the available and optimally placed actuators and sensors in a flexible structure provides enhanced performance with reduced energy consumption. Such approach of switching on and off different actuating devices, depending on their local-in-time authority, results in a hybrid system. Therefore the proposed work draws on existing results on hybrid systems and includes an additional degree of freedom, whereby both the actuating devices and the control signals allocated to them are switched in and out. To enable this switching an activation strategy, which insures also that stability-under-switching is guaranteed, is required. Three different strategies are considered for such actuators allocation: first a cost-to-go index is considered, then a cost function based on the mechanical energy of the flexible structure and finally a performance index based on the maximum deviation of the transverse displacement. A flexible aluminum plate was chosen to validate and test the proposed approaches. The set up utilized four pairs of collocated piezoceramic patches that serve to provide sensing and actuating capabilities. Extensive numerical simulations were performed for both the placement strategies and the switching policies proposed, in order to predict the behavior of the flexible plate and provide the optimal actuator and sensor locations that were to be affixed on the flexible structure. Finally, to complete the validation process a sequence of experimental tests were performed. The objective of these tests was to compare the performance of the proposed hybrid control system to traditional non switched control schemes. In order to provide a repeatable perturbation, four of the piezoceramic patches were allocated to simulate a spatiotemporally varying disturbance, while the remaining four patches were used as sensors and controlling actuators. The experimental results showed a significant performance improvement for the switched controller over the traditional controller. Moreover the switched controller exhibited improved robustness towards spatiotemporally varying disturbances while the traditional controller showed a significant loss of controller performance. The improvement achieved in vibration control problems could be extended to a wider range of applications. In particular, although this study was concentrated on a rectangular thin plate, the proposed strategies can be applied to emph{any} structure and more generally to any plant whose dynamics can be represented by a second order linear system. For example, by removing the restriction of spatially fixed actuators and sensors, the proposed theory can be applied to the problem of unmanned vehicles control

    Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems, part 2

    Get PDF
    A collection of papers presented at the Fourth NASA Workshop on Computational Control of Flexible Aerospace Systems is given. The papers address modeling, systems identification, and control of flexible aircraft, spacecraft and robotic systems

    EXPERIMENTAL STUDIES FOR DEVELOPMENT HIGH-POWER AUDIO SPEAKER DEVICES PERFORMANCE USING PERMANENT NdFeB MAGNETS SPECIAL TECHNOLOGY

    Get PDF
    In this paper the authors shows the research made for improving high-power audio speaker devices performance using permanent NdFeB magnets special technology. Magnetic losses inside these audio devices are due to mechanical system frictions and to thermal effect of Joules eddy currents. In this regard, by special technology, were made conical surfaces at top plate and center pin. Analysing results obtained by modelling the magnetic circuit finite element method using electronic software package,was measured increase efficiency by over 10 %, from 1,136T to13T

    Vibration, Control and Stability of Dynamical Systems

    Get PDF
    From Preface: This is the fourteenth time when the conference “Dynamical Systems: Theory and Applications” gathers a numerous group of outstanding scientists and engineers, who deal with widely understood problems of theoretical and applied dynamics. Organization of the conference would not have been possible without a great effort of the staff of the Department of Automation, Biomechanics and Mechatronics. The patronage over the conference has been taken by the Committee of Mechanics of the Polish Academy of Sciences and Ministry of Science and Higher Education of Poland. It is a great pleasure that our invitation has been accepted by recording in the history of our conference number of people, including good colleagues and friends as well as a large group of researchers and scientists, who decided to participate in the conference for the first time. With proud and satisfaction we welcomed over 180 persons from 31 countries all over the world. They decided to share the results of their research and many years experiences in a discipline of dynamical systems by submitting many very interesting papers. This year, the DSTA Conference Proceedings were split into three volumes entitled “Dynamical Systems” with respective subtitles: Vibration, Control and Stability of Dynamical Systems; Mathematical and Numerical Aspects of Dynamical System Analysis and Engineering Dynamics and Life Sciences. Additionally, there will be also published two volumes of Springer Proceedings in Mathematics and Statistics entitled “Dynamical Systems in Theoretical Perspective” and “Dynamical Systems in Applications”
    corecore