5 research outputs found

    Strategies and tools for the exploitation of massively parallel computer systems

    Get PDF
    The aim of this thesis is to develop software and strategies for the exploitation of parallel computer hardware, in particular distributed memory systems, and embedding these strategies within a parallelisation tool to allow the automatic generation of these strategies. The parallelisation of four structured mesh codes using the Computer Aided Parallelisation Tools provided a good initial parallelisation of the codes. However, investigation revealed that simple optimisation of the communications within these codes provided an even better improvement in performance. The dominant factor within the communications was the data transfer time with communication start-up latencies also significant. This was significant throughout the codes but especially in sections of pipelined code where there were large amounts of communication present. This thesis describes the development and testing of the methods used to increase the performance of these communications by overlapping them with unrelated calculation. This method of overlapping the communications was applied to the exchange of data communications as well as the pipelined communications. The successful application by hand provided the motivation for these methods to be incorporated and automatically generated within the Computer Aided Parallelisation Tools. These methods were integrated within these tools as an additional stage of the parallelisation. This required a generic algorithm that made use of many of the symbolic algebra tests and symbolic variable manipulation routines within the tools. The automatic generation of overlapped communications was applied to the four codes previously parallelised as well as a further three codes, one of which was a real world Computational Fluid Dynamics code. The methods to apply automatic generation of overlapped communications to unstructured mesh codes were also discussed. These methods are similar to those applied to the structured mesh codes and their automation is viewed to be of a similar fashion

    CAPLib - A 'thin layer' message passing library to support computational mechanics codes on distributed memory parallel systems

    No full text
    The Computer Aided Parallelisation Tools (CAPTools) [Ierotheou, C, Johnson SP, Cross M, Leggett PF, Computer aided parallelisation tools (CAPTools)-conceptual overview and performance on the parallelisation of structured mesh codes, Parallel Computing, 1996;22:163±195] is a set of interactive tools aimed to provide automatic parallelisation of serial FORTRAN Computational Mechanics (CM) programs. CAPTools analyses the user's serial code and then through stages of array partitioning, mask and communication calculation, generates parallel SPMD (Single Program Multiple Data) messages passing FORTRAN. The parallel code generated by CAPTools contains calls to a collection of routines that form the CAPTools communications Library (CAPLib). The library provides a portable layer and user friendly abstraction over the underlying parallel environment. CAPLib contains optimised message passing routines for data exchange between parallel processes and other utility routines for parallel execution control, initialisation and debugging. By compiling and linking with different implementations of the library, the user is able to run on many different parallel environments. Even with today's parallel systems the concept of a single version of a parallel application code is more of an aspiration than a reality. However for CM codes the data partitioning SPMD paradigm requires a relatively small set of message-passing communication calls. This set can be implemented as an intermediate `thin layer' library of message-passing calls that enables the parallel code (especially that generated automatically by a parallelisation tool such as CAPTools) to be as generic as possible. CAPLib is just such a `thin layer' message passing library that supports parallel CM codes, by mapping generic calls onto machine specific libraries (such as CRAY SHMEM) and portable general purpose libraries (such as PVM an MPI). This paper describe CAPLib together with its three perceived advantages over other routes: - as a high level abstraction, it is both easy to understand (especially when generated automatically by tools) and to implement by hand, for the CM community (who are not generally parallel computing specialists); - the one parallel version of the application code is truly generic and portable; - the parallel application can readily utilise whatever message passing libraries on a given machine yield optimum performance
    corecore