10 research outputs found

    Automated Image Analysis of High-field and Dynamic Musculoskeletal MRI

    Get PDF

    Characterization of alar ligament on 3.0T MRI: a cross-sectional study in IIUM Medical Centre, Kuantan

    Get PDF
    INTRODUCTION: The main purpose of the study is to compare the normal anatomy of alar ligament on MRI between male and female. The specific objectives are to assess the prevalence of alar ligament visualized on MRI, to describe its characteristics in term of its course, shape and signal homogeneity and to find differences in alar ligament signal intensity between male and female. This study also aims to determine the association between the heights of respondents with alar ligament signal intensity and dimensions. MATERIALS & METHODS: 50 healthy volunteers were studied on 3.0T MR scanner Siemens Magnetom Spectra using 2-mm proton density, T2 and fat-suppression sequences. Alar ligament is depicted in 3 planes and the visualization and variability of the ligament courses, shapes and signal intensity characteristics were determined. The alar ligament dimensions were also measured. RESULTS: Alar ligament was best depicted in coronal plane, followed by sagittal and axial planes. The orientations were laterally ascending in most of the subjects (60%), predominantly oval in shaped (54%) and 67% showed inhomogenous signal. No significant difference of alar ligament signal intensity between male and female respondents. No significant association was found between the heights of the respondents with alar ligament signal intensity and dimensions. CONCLUSION: Employing a 3.0T MR scanner, the alar ligament is best portrayed on coronal plane, followed by sagittal and axial planes. However, tremendous variability of alar ligament as depicted in our data shows that caution needs to be exercised when evaluating alar ligament, especially during circumstances of injury

    Case series of breast fillers and how things may go wrong: radiology point of view

    Get PDF
    INTRODUCTION: Breast augmentation is a procedure opted by women to overcome sagging breast due to breastfeeding or aging as well as small breast size. Recent years have shown the emergence of a variety of injectable materials on market as breast fillers. These injectable breast fillers have swiftly gained popularity among women, considering the minimal invasiveness of the procedure, nullifying the need for terrifying surgery. Little do they know that the procedure may pose detrimental complications, while visualization of breast parenchyma infiltrated by these fillers is also deemed substandard; posing diagnostic challenges. We present a case series of three patients with prior history of hyaluronic acid and collagen breast injections. REPORT: The first patient is a 37-year-old lady who presented to casualty with worsening shortness of breath, non-productive cough, central chest pain; associated with fever and chills for 2-weeks duration. The second patient is a 34-year-old lady who complained of cough, fever and haemoptysis; associated with shortness of breath for 1-week duration. CT in these cases revealed non thrombotic wedge-shaped peripheral air-space densities. The third patient is a 37‐year‐old female with right breast pain, swelling and redness for 2- weeks duration. Previous collagen breast injection performed 1 year ago had impeded sonographic visualization of the breast parenchyma. MRI breasts showed multiple non- enhancing round and oval shaped lesions exhibiting fat intensity. CONCLUSION: Radiologists should be familiar with the potential risks and hazards as well as limitations of imaging posed by breast fillers such that MRI is required as problem-solving tool

    The biomechanics of human locomotion

    Get PDF
    Includes bibliographical references. The thesis on CD-ROM includes Animate, GaitBib, GaitBook and GaitLab, four quick time movies which focus on the functional understanding of human gait. The CD-ROM is available at the Health Sciences Library

    Contribution to the clinical validation of a generic method for the classification of osteoarthritic and non-pathological knee function

    Get PDF
    The Cardiff Dempster-Shafer (DS) classifier is a generic automated technique for analysing motion analysis (MA) data. It can accurately discriminate between level gait characteristics of non-pathological (NP) and osteoarthritic (OA) knee function. It can also quantify and visualise the functional outcome of a total knee replacement (TKR). A number of studies were undertaken to explore and enhance this method. The training set for the classifier was increased by 48% by collecting additional knee function data for level gait. Knee function for nine new patients was classified pre and post-TKR surgery. At 12 months post-TKR, two patients exhibited non-dominant NP knee function. The remaining patients did not recover NP gait. This finding is similar to previous classifications of level gait. To improve the distinction between varying degrees of knee function, stair gait was introduced into the trial. A staircase was designed and validated. Adduction and flexion moments acting about the knee joint and medial component of the ground reaction force were found to be important in the classification of OA and NP knee function from stair gait. Using a combination of these variables the DS classifier was able to characterise OA and NP function for 15 subjects correctly with 100% accuracy, determined using a leave-one-out method of cross validation. The variables were tested to assess the outcome of TKR surgery. The patient assessed recovered NP stair gait post surgery. An image based study was undertaken to investigate the quality of the MA data used in the DS classifier. A step up/down activity for 5 NP and 5 TKR subjects was recorded using non-simultaneous MA and dynamic fluoroscopy. Accurate knee kinematics were computed from the fluoroscopy images using KneeTrack image registration software. MA measured significantly larger knee joint translations and non-sagittal plane rotations. The largest errors in MA derived kinematics were 9.53 for adduction-abduction range of motion (ROM) measured from the NP cohort and 2.63cm compression-distraction ROM of the tibio-femoral joint, measured from the TKR cohort. The generic nature of the DS classifier was tested by its application to distinguish hip function following a lateral (LA) and posterior (PA) approach to total hip arthroplasty. The use of different variables was investigated with the classifier. The best classifier was able to distinguish between NP and LA function with 96.7% accuracy, LA and NP with 86.2% accuracy and between LA and PA with 81.5% accuracy. The PA approach was found to lead to more characteristic NP hip function than LA. These studies show that variables from stair gait should be included in addition to level gait in the classifier. Due to errors when measuring non-sagittal plane rotations using MA, these should be interpreted with caution. The generic nature of the classifier has been proven by its application to another joint, thus answering another orthopaedic question.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Contribution to the clinical validation of a generic method for the classification of osteoarthritic and non-pathological knee function

    Get PDF
    The Cardiff Dempster-Shafer (DS) classifier is a generic automated technique for analysing motion analysis (MA) data. It can accurately discriminate between level gait characteristics of non-pathological (NP) and osteoarthritic (OA) knee function. It can also quantify and visualise the functional outcome of a total knee replacement (TKR). A number of studies were undertaken to explore and enhance this method. The training set for the classifier was increased by 48% by collecting additional knee function data for level gait. Knee function for nine new patients was classified pre and post-TKR surgery. At 12 months post-TKR, two patients exhibited non-dominant NP knee function. The remaining patients did not recover NP gait. This finding is similar to previous classifications of level gait. To improve the distinction between varying degrees of knee function, stair gait was introduced into the trial. A staircase was designed and validated. Adduction and flexion moments acting about the knee joint and medial component of the ground reaction force were found to be important in the classification of OA and NP knee function from stair gait. Using a combination of these variables the DS classifier was able to characterise OA and NP function for 15 subjects correctly with 100% accuracy, determined using a leave-one-out method of cross validation. The variables were tested to assess the outcome of TKR surgery. The patient assessed recovered NP stair gait post surgery. An image based study was undertaken to investigate the quality of the MA data used in the DS classifier. A step up/down activity for 5 NP and 5 TKR subjects was recorded using non-simultaneous MA and dynamic fluoroscopy. Accurate knee kinematics were computed from the fluoroscopy images using KneeTrack image registration software. MA measured significantly larger knee joint translations and non-sagittal plane rotations. The largest errors in MA derived kinematics were 9.53 for adduction-abduction range of motion (ROM) measured from the NP cohort and 2.63cm compression-distraction ROM of the tibio-femoral joint, measured from the TKR cohort. The generic nature of the DS classifier was tested by its application to distinguish hip function following a lateral (LA) and posterior (PA) approach to total hip arthroplasty. The use of different variables was investigated with the classifier. The best classifier was able to distinguish between NP and LA function with 96.7% accuracy, LA and NP with 86.2% accuracy and between LA and PA with 81.5% accuracy. The PA approach was found to lead to more characteristic NP hip function than LA. These studies show that variables from stair gait should be included in addition to level gait in the classifier. Due to errors when measuring non-sagittal plane rotations using MA, these should be interpreted with caution. The generic nature of the classifier has been proven by its application to another joint, thus answering another orthopaedic question
    corecore