166 research outputs found

    The use of 3D surface fitting for robust polyp detection and classification in CT colonography

    Get PDF
    In this paper we describe the development of a computationally efficient computer-aided detection (CAD) algorithm based on the evaluation of the surface morphology that is employed for the detection of colonic polyps in computed tomography (CT) colonography. Initial polyp candidate voxels were detected using the surface normal intersection values. These candidate voxels were clustered using the normal direction, convexity test, region growing and Gaussian distribution. The local colonic surface was classified as polyp or fold using a feature normalized nearest neighborhood classifier. The main merit of this paper is the methodology applied to select the robust features derived from the colon surface that have a high discriminative power for polyp/fold classification. The devised polyp detection scheme entails a low computational overhead (typically takes 2.20 min per dataset) and shows 100% sensitivity for phantom polyps greater than 5 mm. It also shows 100% sensitivity for real polyps larger than 10 mm and 91.67% sensitivity for polyps between 5 to 10 mm with an average of 4.5 false positives per dataset. The experimental data indicates that the proposed CAD polyp detection scheme outperforms other techniques that identify the polyps using features that sample the colon surface curvature especially when applied to low-dose datasets

    Detection of Polyps via Shape and Appearance Modeling

    Get PDF
    Presented at the MICCAI 2008 Workshop on Computational and Visualization Challenges in the New Era of Virtual Colonoscopy, September 6, 2008, New York, USA.This paper describes a CAD system for the detection of colorectal polyps in CT. It is based on stochastic shape and appearance modeling of structures of the colon and rectum, in contrast to the data-driven approaches more commonly found in the literature it derives predictive stochastic models for the features used for classification. The method makes extensive use of medical domain knowledge in the design of the models and in the setting of their parameters. The proposed approach was successfully tested on challenging datasets acquired under a protocol with little colonic preparation; such protocol reduces patient discomfort and potentially improves compliance

    A fully automatic CAD-CTC system based on curvature analysis for standard and low-dose CT data

    Get PDF
    Computed tomography colonography (CTC) is a rapidly evolving noninvasive medical investigation that is viewed by radiologists as a potential screening technique for the detection of colorectal polyps. Due to the technical advances in CT system design, the volume of data required to be processed by radiologists has increased significantly, and as a consequence the manual analysis of this information has become an increasingly time consuming process whose results can be affected by inter- and intrauser variability. The aim of this paper is to detail the implementation of a fully integrated CAD-CTC system that is able to robustly identify the clinically significant polyps in the CT data. The CAD-CTC system described in this paper is a multistage implementation whose main system components are: 1) automatic colon segmentation; 2) candidate surface extraction; 3) feature extraction; and 4) classification. Our CAD-CTC system performs at 100% sensitivity for polyps larger than 10 mm, 92% sensitivity for polyps in the range 5 to 10 mm, and 57.14% sensitivity for polyps smaller than 5 mm with an average of 3.38 false positives per dataset. The developed system has been evaluated on synthetic and real patient CT data acquired with standard and low-dose radiation levels

    The use of 3D surface fitting for robust polyp detection and classification in CT colonography

    Get PDF
    In this paper we describe the development of a computationally efficient computer-aided detection (CAD) algorithm based on the evaluation of the surface morphology that is employed for the detection of colonic polyps in computed tomography (CT) colonography. Initial polyp candidate voxels were detected using the surface normal intersection values. These candidate voxels were clustered using the normal direction, convexity test, region growing and Gaussian distribution. The local colonic surface was classified as polyp or fold using a feature normalized nearest neighbor-hood classifier. The main merit of this paper is the methodology applied to select the robust features derived from the colon surface that have a high discriminative power for polyp/fold classification. The devised polyp detection scheme entails a low computational overhead (typically takes 2.20 minute per dataset) and shows 100% sensitivity for phantom polyps greater than 5mm. It also shows 100% sensitivity for real polyps larger than 10mm and 91.67% sensitivity for polyps between 5 to 10mm with an average of 4.5 false positives per dataset. The experimental data indicates that the proposed CAD polyp detection scheme outperforms other techniques that identify the polyps using features that sample the colon surface curvature especially when applied to low-dose datasets

    Computer-aided detection of colonic polyps with level set-based adaptive convolution in volumetric mucosa to advance CT colonography toward a screening modality

    Get PDF
    As a promising second reader of computed tomographic colonography (CTC) screening, the computer-aided detection (CAD) of colonic polyps has earned fast growing research interest. In this paper, we present a CAD scheme to automatically detect colonic polyps in CTC images. First, a thick colon wall representation, ie, a volumetric mucosa (VM) with several voxels wide in general, was segmented from CTC images by a partial-volume image segmentation algorithm. Based on the VM, we employed a level set-based adaptive convolution method for calculating the first- and second-order spatial derivatives more accurately to start the geometric analysis. Furthermore, to emphasize the correspondence among different layers in the VM, we introduced a middle-layer enhanced integration along the image gradient direction inside the VM to improve the operation of extracting the geometric information, like the principal curvatures. Initial polyp candidates (IPCs) were then determined by thresholding the geometric measurements. Based on IPCs, several features were extracted for each IPC, and fed into a support vector machine to reduce false positives (FPs). The final detections were displayed in a commercial system to provide second opinions for radiologists. The CAD scheme was applied to 26 patient CTC studies with 32 confirmed polyps by both optical and virtual colonoscopies. Compared to our previous work, all the polyps can be detected successfully with less FPs. At the 100% by polyp sensitivity, the new method yielded 3.5 FPs/dataset

    Development of a synthetic phantom for the selection of optimal scanning parameters in CAD-CT colonography

    Get PDF
    The aim of this paper is to present the development of a synthetic phantom that can be used for the selection of optimal scanning parameters in computed tomography (CT) colonography. In this paper we attempt to evaluate the influence of the main scanning parameters including slice thickness, reconstruction interval, field of view, table speed and radiation dose on the overall performance of a computer aided detection (CAD)–CTC system. From these parameters the radiation dose received a special attention, as the major problem associated with CTC is the patient exposure to significant levels of ionising radiation. To examine the influence of the scanning parameters we performed 51 CT scans where the spread of scanning parameters was divided into seven different protocols. A large number of experimental tests were performed and the results analysed. The results show that automatic polyp detection is feasible even in cases when the CAD–CTC system was applied to low dose CT data acquired with the following protocol: 13 mAs/rotation with collimation of 1.5 mm × 16 mm, slice thickness of 3.0 mm, reconstruction interval of 1.5 mm, table speed of 30 mm per rotation. The CT phantom data acquired using this protocol was analysed by an automated CAD–CTC system and the experimental results indicate that our system identified all clinically significant polyps (i.e. larger than 5 mm)
    corecore