189 research outputs found

    5G Technology in Smart Healthcare and Smart City Development Integration with Deep Learning Architectures

    Get PDF
    As more and more medical devices, including as mobile phones, sensors, and remote monitoring equipment, require Internet access, wireless networks have gained considerable traction in the healthcare sector. High-performance technologies, such as the forthcoming fifth generation/sixth generation (5G/6G), are needed for data transit to and from medical equipment in order to give patients with state-of-the-art medical treatments. Furthermore, much better optimization techniques must be used when creating its primary components. Intelligent system design affects how all medical equipment operates, which presents a challenging issue in medical applications. Using information from many sources, electronic health records are built and stored there. These data are compiled in several formats and techniques. There are various big data strategies that could be utilised to reconcile the conflicting data. Artificial intelligence, machine learning and deep learning methods can be used to forecast diseases or other problems using the knowledge gathered from big data analytics. With the advent of 5G, augmented reality, virtual reality and spatial computing are all enhanced, which has a profound effect on healthcare informatics by allowing for real-time remote monitoring. With the advent of 5G technologies, healthcare services can be provided over vast distances via a vast network of interconnected devices and high-performance computation. Disease detection and treatment using dynamic data can be accomplished with the help of deep learning techniques such as Deep Convolutional Neural Networks (DCNN). Deep convolutional neural networks that incorporate images of sick regions are frequently employed for classification tasks

    NeutRAN: An Open RAN Neutral Host Architecture for Zero-Touch RAN and Spectrum Sharing

    Full text link
    Obtaining access to exclusive spectrum, cell sites, Radio Access Network (RAN) equipment, and edge infrastructure imposes major capital expenses to mobile network operators. A neutral host infrastructure, by which a third-party company provides RAN services to mobile operators through network virtualization and slicing techniques, is seen as a promising solution to decrease these costs. Currently, however, neutral host providers lack automated and virtualized pipelines for onboarding new tenants and to provide elastic and on-demand allocation of resources matching operators' requirements. To address this gap, this paper presents NeutRAN, a zero-touch framework based on the O-RAN architecture to support applications on neutral hosts and automatic operator onboarding. NeutRAN builds upon two key components: (i) an optimization engine to guarantee coverage and to meet quality of service requirements while accounting for the limited amount of shared spectrum and RAN nodes, and (ii) a fully virtualized and automated infrastructure that converts the output of the optimization engine into deployable micro-services to be executed at RAN nodes and cell sites. NeutRAN was prototyped on an OpenShift cluster and on a programmable testbed with 4 base stations and 10 users from 3 different tenants. We evaluate its benefits, comparing it to a traditional license-based RAN where each tenant has dedicated physical and spectrum resources. We show that NeutRAN can deploy a fully operational neutral host-based cellular network in around 10 seconds. Experimental results show that it increases the cumulative network throughput by 2.18x and the per-user average throughput by 1.73x in networks with shared spectrum blocks of 30 MHz. NeutRAN provides a 1.77x cumulative throughput gain even when it can only operate on a shared spectrum block of 10 MHz (one third of the spectrum used in license-based RANs).Comment: 13 pages, 11 figures, 1 table. IEEE Transactions on Mobile Computing, August 202

    A cloud-enabled small cell architecture in 5G networks for broadcast/multicast services

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The evolution of 5G suggests that communication networks become sufficiently flexible to handle a wide variety of network services from various domains. The virtualization of small cells as envisaged by 5G, allows enhanced mobile edge computing capabilities, thus enabling network service deployment and management near the end user. This paper presents a cloud-enabled small cell architecture for 5G networks developed within the 5G-ESSENCE project. This paper also presents the conformity of the proposed architecture to the evolving 5G radio resource management architecture. Furthermore, it examines the inclusion of an edge enabler to support a variety of virtual network functions in 5G networks. Next, the improvement of specific key performance indicators in a public safety use case is evaluated. Finally, the performance of a 5G enabled evolved multimedia broadcast multicast services service is evaluated.Peer ReviewedPostprint (author's final draft

    Emerging Technologies:The case of Edge Computing

    Get PDF

    The Cloud-to-Thing Continuum

    Get PDF
    The Internet of Things offers massive societal and economic opportunities while at the same time significant challenges, not least the delivery and management of the technical infrastructure underpinning it, the deluge of data generated from it, ensuring privacy and security, and capturing value from it. This Open Access Pivot explores these challenges, presenting the state of the art and future directions for research but also frameworks for making sense of this complex area. This book provides a variety of perspectives on how technology innovations such as fog, edge and dew computing, 5G networks, and distributed intelligence are making us rethink conventional cloud computing to support the Internet of Things. Much of this book focuses on technical aspects of the Internet of Things, however, clear methodologies for mapping the business value of the Internet of Things are still missing. We provide a value mapping framework for the Internet of Things to address this gap. While there is much hype about the Internet of Things, we have yet to reach the tipping point. As such, this book provides a timely entrée for higher education educators, researchers and students, industry and policy makers on the technologies that promise to reshape how society interacts and operates
    • …
    corecore