245 research outputs found

    Riemannian Optimization via Frank-Wolfe Methods

    Full text link
    We study projection-free methods for constrained Riemannian optimization. In particular, we propose the Riemannian Frank-Wolfe (RFW) method. We analyze non-asymptotic convergence rates of RFW to an optimum for (geodesically) convex problems, and to a critical point for nonconvex objectives. We also present a practical setting under which RFW can attain a linear convergence rate. As a concrete example, we specialize Rfw to the manifold of positive definite matrices and apply it to two tasks: (i) computing the matrix geometric mean (Riemannian centroid); and (ii) computing the Bures-Wasserstein barycenter. Both tasks involve geodesically convex interval constraints, for which we show that the Riemannian "linear oracle" required by RFW admits a closed-form solution; this result may be of independent interest. We further specialize RFW to the special orthogonal group and show that here too, the Riemannian "linear oracle" can be solved in closed form. Here, we describe an application to the synchronization of data matrices (Procrustes problem). We complement our theoretical results with an empirical comparison of Rfw against state-of-the-art Riemannian optimization methods and observe that RFW performs competitively on the task of computing Riemannian centroids.Comment: Under Review. Largely revised version, including an extended experimental section and an application to the special orthogonal group and the Procrustes proble

    Barycentric Subspace Analysis on Manifolds

    Full text link
    This paper investigates the generalization of Principal Component Analysis (PCA) to Riemannian manifolds. We first propose a new and general type of family of subspaces in manifolds that we call barycentric subspaces. They are implicitly defined as the locus of points which are weighted means of k+1k+1 reference points. As this definition relies on points and not on tangent vectors, it can also be extended to geodesic spaces which are not Riemannian. For instance, in stratified spaces, it naturally allows principal subspaces that span several strata, which is impossible in previous generalizations of PCA. We show that barycentric subspaces locally define a submanifold of dimension k which generalizes geodesic subspaces.Second, we rephrase PCA in Euclidean spaces as an optimization on flags of linear subspaces (a hierarchy of properly embedded linear subspaces of increasing dimension). We show that the Euclidean PCA minimizes the Accumulated Unexplained Variances by all the subspaces of the flag (AUV). Barycentric subspaces are naturally nested, allowing the construction of hierarchically nested subspaces. Optimizing the AUV criterion to optimally approximate data points with flags of affine spans in Riemannian manifolds lead to a particularly appealing generalization of PCA on manifolds called Barycentric Subspaces Analysis (BSA).Comment: Annals of Statistics, Institute of Mathematical Statistics, A Para\^itr

    Real-time manhattan world rotation estimation in 3D

    Get PDF
    Drift of the rotation estimate is a well known problem in visual odometry systems as it is the main source of positioning inaccuracy. We propose three novel algorithms to estimate the full 3D rotation to the surrounding Manhattan World (MW) in as short as 20 ms using surface-normals derived from the depth channel of a RGB-D camera. Importantly, this rotation estimate acts as a structure compass which can be used to estimate the bias of an odometry system, such as an inertial measurement unit (IMU), and thus remove its angular drift. We evaluate the run-time as well as the accuracy of the proposed algorithms on groundtruth data. They achieve zerodrift rotation estimation with RMSEs below 3.4° by themselves and below 2.8° when integrated with an IMU in a standard extended Kalman filter (EKF). Additional qualitative results show the accuracy in a large scale indoor environment as well as the ability to handle fast motion. Selected segmentations of scenes from the NYU depth dataset demonstrate the robustness of the inference algorithms to clutter and hint at the usefulness of the segmentation for further processing.United States. Office of Naval Research. Multidisciplinary University Research Initiative6 (Awards N00014-11-1-0688 and N00014-10-1-0936)National Science Foundation (U.S.) (Award IIS-1318392

    A survey and comparison of contemporary algorithms for computing the matrix geometric mean

    Get PDF
    In this paper we present a survey of various algorithms for computing matrix geometric means and derive new second-order optimization algorithms to compute the Karcher mean. These new algorithms are constructed using the standard definition of the Riemannian Hessian. The survey includes the ALM list of desired properties for a geometric mean, the analytical expression for the mean of two matrices, algorithms based on the centroid computation in Euclidean (flat) space, and Riemannian optimization techniques to compute the Karcher mean (preceded by a short introduction into differential geometry). A change of metric is considered in the optimization techniques to reduce the complexity of the structures used in these algorithms. Numerical experiments are presented to compare the existing and the newly developed algorithms. We conclude that currently first-order algorithms are best suited for this optimization problem as the size and/or number of the matrices increase. Copyright © 2012, Kent State University
    • …
    corecore