1,078 research outputs found

    DOA estimation of two targets using beamformer based methods with application to automotive radar

    Get PDF
    Projecte final de carrera fet en col.laboració amb Technische Universität DarmstadtEnglish: Direction-of-arrival (DOA) estimation of two targets plays an important role in automotive radar. Two cases are distinguished: when the targets are closely spaced and the conventional beamformer is not able to resolve them, and when the targets are widely spaced and the beamformer is able to resolve them. In the first case, accurate estimates can be obtained using high-resolution techniques. In the second case, estimates are typically biased. Automotive radar applications demand real-time processing and therefore the computational cost has to be addressed. For the resolved scenario, we propose a procedure to reduce the bias of the beamformer estimates, thus avoiding the use of iterative algorithms. The final estimates are obtained after applying a correction term, which is calculated off-line and stored in a look-up table. For the non-resolved scenario, we consider a practicable implementation of the maximum likelihood estimator. A simplified version of the cost function is used to reduce the complexity. The peak location from the beamformer can also be used to delimit the search range. The results of the mentioned methods are compared with other iterative algorithms, in terms of performance and computational cost. Applying the correction factors, the bias of the beamformer estimates are successfully reduced, making them accurate enough for the automotive radar application. The simplified implementation of the ML cost function reduces significantly the computational cost, allowing its use in real-time applications. Moreover, the performance obtained is also within the acceptable range for the automotive radar application, even for narrow angular separations. A block diagram containing the proposed methods is finally given, which is proposed as a suitable DOA estimation system for the automotive radar application.Castellano: La estimación del ángulo de llegada (DOA estimation) para dos objetivos juega un papel importante dentro de las aplicaciones radar para la automoción. Para este caso, distinguimos entre dos escenarios: cuando los objetivos se encuentran muy cerca el uno del otro y el beamformer convencional no es capaz de resolverlos, y cuando los objetivos se encuentran bastante separados y éste sí es capaz de resolverlos. En el primer escenario, podemos conseguir estimaciones más precisas mediante el uso de técnicas de alta resolución. En el segundo escenario, las estimaciones obtenidas son típicamente sesgadas. Las aplicaciones radar para la automoción requieren del procesado de datos en tiempo real y, por lo tanto, la carga computacional debe ser reducida. Para el escenario resuelto, proponemos un procedimiento que permite reducir el sesgo de las estimaciones del beamformer, evitando así el uso de algoritmos iterativos. Las estimaciones finales se obtienen tras aplicar un término de corrección, que es calculado previamente off-line y almacenado en una tabla (look-up table). Para el caso no resuelto, consideramos una implementación factible del estimador de máxima verosimilutud (MLE). Por tal de reducir la complejidad de los cálculos, usamos una versión simplificada de la función de coste del estimador. Además, el máximo obtenido del beamformer es usado también para delimitar el rango de búsqueda, reduciendo aún más la carga computacional. Los resultados obtenidos tras aplicar los métodos mencionados son contrastados con otros algoritmos iterativos, en términos de rendimiento y carga computacional. Aplicando los factores de corrección, el sesgo de las estimaciones obtenidas mediante el beamformer se ve reducido considerablemente, permitiendo tasas de error aptas para su uso en aplicaciones radar para la automoción. La versión simplificada del MLE reduce significantemente la carga computacional, haciendo posible también su uso para aplicaciones en tiempo real. Además, el comportamiento obtenido se encuentra de igual manera dentro del rango aceptado en aplicaciones radar para la automoción, incluso para ángulos de llegada muy próximos entre si. Finalmente, proporcionamos un diagrama de bloques que combina las técnicas descritas, el cual es propuesto como un sistema apropiado para la estimación del ángulo de llegada en aplicaciones radar para la automoción.Català: L'estimació de l'angle d'arribada (DOA estimation) per dos objectius juga un paper important dintre de les aplicacions radar per a l'automoció. En aquest cas, podem distingir entre dos escenaris diferents: quan els objectius es troben molt a prop l'un de l'altre i el beamformer convencional no és capaç de resoldre'ls, i quan els objectius es troben bastant separats i aquest si és capaç de resoldre'ls. En el primer escenari, podem aconseguir estimacions més precises mitjançant l'ús de tècniques d'alta resolució. En el segon escenari, les estimacions obtingudes son típicament esbiaixades. Les aplicacions radar per a l'automoció requereixen de processament de dades en temps real i, per tant, la carga computacional ha de ser reduïda. Per a l'escenari resolt, proposem un procediment que fa possible reduir el biaix de les estimacions del beamformer, evitant així l'ús d'algoritmes iteratius. Les estimacions finals s'obtenen després d'aplicar un terme de correcció, que és calculat prèviament off-line i emmagatzemat en una taula (look-up table). Per al cas no resolt, considerem una implementació factible de l'estimador de màxima versemblança (MLE). Per tal de reduir la complexitat dels càlculs, utilitzem una versió simplificada de la funció de cost de l'estimador. A més, utilitzem el màxim obtingut del beamformer per delimitar el rang de cerca, reduint encara més la carga computacional. Els resultats obtinguts després d'aplicar els mètodes mencionats són contrastats am altres algoritmes iteratius, en termes de rendiment i carga computacional. Aplicant els factors de correcció, el biaix de les estimacions del beamformer es veu reduït considerablement, produint tasses d'error aptes per el seu ús en aplicacions radar per a l'automoció. La versió simplificada del MLE redueix significativament la carga computacional, fent possible també el seu ús per aplicacions en temps real. A més, el comportament obtingut es troba d'igual manera dins del marge acceptable en aplicacions radar per a l'automoció, fins i tot per angles d'arribada molt pròxims entre si. Finalment, proporcionem un diagrama de blocs que combina les tècniques descrites, el qual es proposat com a sistema apropiat per a l'estimació de l'angle d'arribada en aplicacions radar per a l'automoció

    RADAR Based Collision Avoidance for Unmanned Aircraft Systems

    Get PDF
    Unmanned Aircraft Systems (UAS) have become increasingly prevalent and will represent an increasing percentage of all aviation. These unmanned aircraft are available in a wide range of sizes and capabilities and can be used for a multitude of civilian and military applications. However, as the number of UAS increases so does the risk of mid-air collisions involving unmanned aircraft. This dissertation aims present one possible solution for addressing the mid-air collision problem in addition to increasing the levels of autonomy of UAS beyond waypoint navigation to include preemptive sensor-based collision avoidance. The presented research goes beyond the current state of the art by demonstrating the feasibility and providing an example of a scalable, self-contained, RADAR-based, collision avoidance system. The technology described herein can be made suitable for use on a miniature (Maximum Takeoff Weight \u3c 10kg) UAS platform. This is of paramount importance as the miniature UAS field has the lowest barriers to entry (acquisition and operating costs) and consequently represents the most rapidly increasing class of UAS

    The University Defence Research Collaboration In Signal Processing

    Get PDF
    This chapter describes the development of algorithms for automatic detection of anomalies from multi-dimensional, undersampled and incomplete datasets. The challenge in this work is to identify and classify behaviours as normal or abnormal, safe or threatening, from an irregular and often heterogeneous sensor network. Many defence and civilian applications can be modelled as complex networks of interconnected nodes with unknown or uncertain spatio-temporal relations. The behavior of such heterogeneous networks can exhibit dynamic properties, reflecting evolution in both network structure (new nodes appearing and existing nodes disappearing), as well as inter-node relations. The UDRC work has addressed not only the detection of anomalies, but also the identification of their nature and their statistical characteristics. Normal patterns and changes in behavior have been incorporated to provide an acceptable balance between true positive rate, false positive rate, performance and computational cost. Data quality measures have been used to ensure the models of normality are not corrupted by unreliable and ambiguous data. The context for the activity of each node in complex networks offers an even more efficient anomaly detection mechanism. This has allowed the development of efficient approaches which not only detect anomalies but which also go on to classify their behaviour

    Novel Hybrid-Learning Algorithms for Improved Millimeter-Wave Imaging Systems

    Full text link
    Increasing attention is being paid to millimeter-wave (mmWave), 30 GHz to 300 GHz, and terahertz (THz), 300 GHz to 10 THz, sensing applications including security sensing, industrial packaging, medical imaging, and non-destructive testing. Traditional methods for perception and imaging are challenged by novel data-driven algorithms that offer improved resolution, localization, and detection rates. Over the past decade, deep learning technology has garnered substantial popularity, particularly in perception and computer vision applications. Whereas conventional signal processing techniques are more easily generalized to various applications, hybrid approaches where signal processing and learning-based algorithms are interleaved pose a promising compromise between performance and generalizability. Furthermore, such hybrid algorithms improve model training by leveraging the known characteristics of radio frequency (RF) waveforms, thus yielding more efficiently trained deep learning algorithms and offering higher performance than conventional methods. This dissertation introduces novel hybrid-learning algorithms for improved mmWave imaging systems applicable to a host of problems in perception and sensing. Various problem spaces are explored, including static and dynamic gesture classification; precise hand localization for human computer interaction; high-resolution near-field mmWave imaging using forward synthetic aperture radar (SAR); SAR under irregular scanning geometries; mmWave image super-resolution using deep neural network (DNN) and Vision Transformer (ViT) architectures; and data-level multiband radar fusion using a novel hybrid-learning architecture. Furthermore, we introduce several novel approaches for deep learning model training and dataset synthesis.Comment: PhD Dissertation Submitted to UTD ECE Departmen

    DOA estimation of two targets using beamformer based methods with application to automotive radar

    Get PDF
    Projecte final de carrera fet en col.laboració amb Technische Universität DarmstadtEnglish: Direction-of-arrival (DOA) estimation of two targets plays an important role in automotive radar. Two cases are distinguished: when the targets are closely spaced and the conventional beamformer is not able to resolve them, and when the targets are widely spaced and the beamformer is able to resolve them. In the first case, accurate estimates can be obtained using high-resolution techniques. In the second case, estimates are typically biased. Automotive radar applications demand real-time processing and therefore the computational cost has to be addressed. For the resolved scenario, we propose a procedure to reduce the bias of the beamformer estimates, thus avoiding the use of iterative algorithms. The final estimates are obtained after applying a correction term, which is calculated off-line and stored in a look-up table. For the non-resolved scenario, we consider a practicable implementation of the maximum likelihood estimator. A simplified version of the cost function is used to reduce the complexity. The peak location from the beamformer can also be used to delimit the search range. The results of the mentioned methods are compared with other iterative algorithms, in terms of performance and computational cost. Applying the correction factors, the bias of the beamformer estimates are successfully reduced, making them accurate enough for the automotive radar application. The simplified implementation of the ML cost function reduces significantly the computational cost, allowing its use in real-time applications. Moreover, the performance obtained is also within the acceptable range for the automotive radar application, even for narrow angular separations. A block diagram containing the proposed methods is finally given, which is proposed as a suitable DOA estimation system for the automotive radar application.Castellano: La estimación del ángulo de llegada (DOA estimation) para dos objetivos juega un papel importante dentro de las aplicaciones radar para la automoción. Para este caso, distinguimos entre dos escenarios: cuando los objetivos se encuentran muy cerca el uno del otro y el beamformer convencional no es capaz de resolverlos, y cuando los objetivos se encuentran bastante separados y éste sí es capaz de resolverlos. En el primer escenario, podemos conseguir estimaciones más precisas mediante el uso de técnicas de alta resolución. En el segundo escenario, las estimaciones obtenidas son típicamente sesgadas. Las aplicaciones radar para la automoción requieren del procesado de datos en tiempo real y, por lo tanto, la carga computacional debe ser reducida. Para el escenario resuelto, proponemos un procedimiento que permite reducir el sesgo de las estimaciones del beamformer, evitando así el uso de algoritmos iterativos. Las estimaciones finales se obtienen tras aplicar un término de corrección, que es calculado previamente off-line y almacenado en una tabla (look-up table). Para el caso no resuelto, consideramos una implementación factible del estimador de máxima verosimilutud (MLE). Por tal de reducir la complejidad de los cálculos, usamos una versión simplificada de la función de coste del estimador. Además, el máximo obtenido del beamformer es usado también para delimitar el rango de búsqueda, reduciendo aún más la carga computacional. Los resultados obtenidos tras aplicar los métodos mencionados son contrastados con otros algoritmos iterativos, en términos de rendimiento y carga computacional. Aplicando los factores de corrección, el sesgo de las estimaciones obtenidas mediante el beamformer se ve reducido considerablemente, permitiendo tasas de error aptas para su uso en aplicaciones radar para la automoción. La versión simplificada del MLE reduce significantemente la carga computacional, haciendo posible también su uso para aplicaciones en tiempo real. Además, el comportamiento obtenido se encuentra de igual manera dentro del rango aceptado en aplicaciones radar para la automoción, incluso para ángulos de llegada muy próximos entre si. Finalmente, proporcionamos un diagrama de bloques que combina las técnicas descritas, el cual es propuesto como un sistema apropiado para la estimación del ángulo de llegada en aplicaciones radar para la automoción.Català: L'estimació de l'angle d'arribada (DOA estimation) per dos objectius juga un paper important dintre de les aplicacions radar per a l'automoció. En aquest cas, podem distingir entre dos escenaris diferents: quan els objectius es troben molt a prop l'un de l'altre i el beamformer convencional no és capaç de resoldre'ls, i quan els objectius es troben bastant separats i aquest si és capaç de resoldre'ls. En el primer escenari, podem aconseguir estimacions més precises mitjançant l'ús de tècniques d'alta resolució. En el segon escenari, les estimacions obtingudes son típicament esbiaixades. Les aplicacions radar per a l'automoció requereixen de processament de dades en temps real i, per tant, la carga computacional ha de ser reduïda. Per a l'escenari resolt, proposem un procediment que fa possible reduir el biaix de les estimacions del beamformer, evitant així l'ús d'algoritmes iteratius. Les estimacions finals s'obtenen després d'aplicar un terme de correcció, que és calculat prèviament off-line i emmagatzemat en una taula (look-up table). Per al cas no resolt, considerem una implementació factible de l'estimador de màxima versemblança (MLE). Per tal de reduir la complexitat dels càlculs, utilitzem una versió simplificada de la funció de cost de l'estimador. A més, utilitzem el màxim obtingut del beamformer per delimitar el rang de cerca, reduint encara més la carga computacional. Els resultats obtinguts després d'aplicar els mètodes mencionats són contrastats am altres algoritmes iteratius, en termes de rendiment i carga computacional. Aplicant els factors de correcció, el biaix de les estimacions del beamformer es veu reduït considerablement, produint tasses d'error aptes per el seu ús en aplicacions radar per a l'automoció. La versió simplificada del MLE redueix significativament la carga computacional, fent possible també el seu ús per aplicacions en temps real. A més, el comportament obtingut es troba d'igual manera dins del marge acceptable en aplicacions radar per a l'automoció, fins i tot per angles d'arribada molt pròxims entre si. Finalment, proporcionem un diagrama de blocs que combina les tècniques descrites, el qual es proposat com a sistema apropiat per a l'estimació de l'angle d'arribada en aplicacions radar per a l'automoció

    Emerging Approaches for THz Array Imaging: A Tutorial Review and Software Tool

    Full text link
    Accelerated by the increasing attention drawn by 5G, 6G, and Internet of Things applications, communication and sensing technologies have rapidly evolved from millimeter-wave (mmWave) to terahertz (THz) in recent years. Enabled by significant advancements in electromagnetic (EM) hardware, mmWave and THz frequency regimes spanning 30 GHz to 300 GHz and 300 GHz to 3000 GHz, respectively, can be employed for a host of applications. The main feature of THz systems is high-bandwidth transmission, enabling ultra-high-resolution imaging and high-throughput communications; however, challenges in both the hardware and algorithmic arenas remain for the ubiquitous adoption of THz technology. Spectra comprising mmWave and THz frequencies are well-suited for synthetic aperture radar (SAR) imaging at sub-millimeter resolutions for a wide spectrum of tasks like material characterization and nondestructive testing (NDT). This article provides a tutorial review of systems and algorithms for THz SAR in the near-field with an emphasis on emerging algorithms that combine signal processing and machine learning techniques. As part of this study, an overview of classical and data-driven THz SAR algorithms is provided, focusing on object detection for security applications and SAR image super-resolution. We also discuss relevant issues, challenges, and future research directions for emerging algorithms and THz SAR, including standardization of system and algorithm benchmarking, adoption of state-of-the-art deep learning techniques, signal processing-optimized machine learning, and hybrid data-driven signal processing algorithms...Comment: Submitted to Proceedings of IEE

    Radar-based Application of Pedestrian and Cyclist Micro-Doppler Signatures for Automotive Safety Systems

    Get PDF
    Die sensorbasierte Erfassung des Nahfeldes im Kontext des hochautomatisierten Fahrens erfährt einen spürbaren Trend bei der Integration von Radarsensorik. Fortschritte in der Mikroelektronik erlauben den Einsatz von hochauflösenden Radarsensoren, die durch effiziente Verfahren sowohl im Winkel als auch in der Entfernung und im Doppler die Messgenauigkeit kontinuierlich ansteigen lassen. Dadurch ergeben sich neuartige Möglichkeiten bei der Bestimmung der geometrischen und kinematischen Beschaffenheit ausgedehnter Ziele im Fahrzeugumfeld, die zur gezielten Entwicklung von automotiven Sicherheitssystemen herangezogen werden können. Im Rahmen dieser Arbeit werden ungeschützte Verkehrsteilnehmer wie Fußgänger und Radfahrer mittels eines hochauflösenden Automotive-Radars analysiert. Dabei steht die Erscheinung des Mikro-Doppler-Effekts, hervorgerufen durch das hohe Maß an kinematischen Freiheitsgraden der Objekte, im Vordergrund der Betrachtung. Die durch den Mikro-Doppler-Effekt entstehenden charakteristischen Radar-Signaturen erlauben eine detailliertere Perzeption der Objekte und können in direkten Zusammenhang zu ihren aktuellen Bewegungszuständen gesetzt werden. Es werden neuartige Methoden vorgestellt, die die geometrischen und kinematischen Ausdehnungen der Objekte berücksichtigen und echtzeitfähige Ansätze zur Klassifikation und Verhaltensindikation realisieren. Wird ein ausgedehntes Ziel (z.B. Radfahrer) von einem Radarsensor detektiert, können aus dessen Mikro-Doppler-Signatur wesentliche Eigenschaften bezüglich seines Bewegungszustandes innerhalb eines Messzyklus erfasst werden. Die Geschwindigkeitsverteilungen der sich drehenden Räder erlauben eine adaptive Eingrenzung der Tretbewegung, deren Verhalten essentielle Merkmale im Hinblick auf eine vorausschauende Unfallprädiktion aufweist. Ferner unterliegen ausgedehnte Radarziele einer Orientierungsabhängigkeit, die deren geometrischen und kinematischen Profile direkt beeinflusst. Dies kann sich sowohl negativ auf die Klassifikations-Performance als auch auf die Verwertbarkeit von Parametern auswirken, die eine Absichtsbekundung des Radarziels konstituieren. Am Beispiel des Radfahrers wird hierzu ein Verfahren vorgestellt, das die orientierungsabhängigen Parameter in Entfernung und Doppler normalisiert und die gemessenen Mehrdeutigkeiten kompensiert. Ferner wird in dieser Arbeit eine Methodik vorgestellt, die auf Grundlage des Mikro- Doppler-Profils eines Fußgängers dessen Beinbewegungen über die Zeit schätzt (Tracking) und wertvolle Objektinformationen hinsichtlich seines Bewegungsverhaltens offenbart. Dazu wird ein Bewegungsmodell entwickelt, das die nichtlineare Fortbewegung des Beins approximiert und dessen hohes Maß an biomechanischer Variabilität abbildet. Durch die Einbeziehung einer wahrscheinlichkeitsbasierten Datenassoziation werden die Radar-Detektionen ihren jeweils hervorrufenden Quellen (linkes und rechtes Bein) zugeordnet und eine Trennung der Gliedmaßen realisiert. Im Gegensatz zu bisherigen Tracking-Verfahren weist die vorgestellte Methodik eine Steigerung in der Genauigkeit der Objektinformationen auf und stellt damit einen entscheidenden Vorteil für zukünftige Fahrerassistenzsysteme dar, um deutlich schneller auf kritische Verkehrssituationen reagieren zu können.:1 Introduction 1 1.1 Automotive environmental perception 2 1.2 Contributions of this work 4 1.3 Thesis overview 6 2 Automotive radar 9 2.1 Physical fundamentals 9 2.1.1 Radar cross section 9 2.1.2 Radar equation 10 2.1.3 Micro-Doppler effect 11 2.2 Radar measurement model 15 2.2.1 FMCW radar 15 2.2.2 Chirp sequence modulation 17 2.2.3 Direction-of-arrival estimation 22 2.3 Signal processing 25 2.3.1 Target properties 26 2.3.2 Target extraction 28 Power detection 28 Clustering 30 2.3.3 Real radar data example 31 2.4 Conclusion 33 3 Micro-Doppler applications of a cyclist 35 3.1 Physical fundamentals 35 3.1.1 Micro-Doppler signatures of a cyclist 35 3.1.2 Orientation dependence 36 3.2 Cyclist feature extraction 38 3.2.1 Adaptive pedaling extraction 38 Ellipticity constraints 38 Ellipse fitting algorithm 39 3.2.2 Experimental results 42 3.3 Normalization of the orientation dependence 44 3.3.1 Geometric correction 44 3.3.2 Kinematic correction 45 3.3.3 Experimental results 45 3.4 Conclusion 47 3.5 Discussion and outlook 47 4 Micro-Doppler applications of a pedestrian 49 4.1 Pedestrian detection 49 4.1.1 Human kinematics 49 4.1.2 Micro-Doppler signatures of a pedestrian 51 4.1.3 Experimental results 52 Radially moving pedestrian 52 Crossing pedestrian 54 4.2 Pedestrian feature extraction 57 4.2.1 Frequency-based limb separation 58 4.2.2 Extraction of body parts 60 4.2.3 Experimental results 62 4.3 Pedestrian tracking 64 4.3.1 Probabilistic state estimation 65 4.3.2 Gaussian filters 67 4.3.3 The Kalman filter 67 4.3.4 The extended Kalman filter 69 4.3.5 Multiple-object tracking 71 4.3.6 Data association 74 4.3.7 Joint probabilistic data association 80 4.4 Kinematic-based pedestrian tracking 84 4.4.1 Kinematic modeling 84 4.4.2 Tracking motion model 87 4.4.3 4-D radar point cloud 91 4.4.4 Tracking implementation 92 4.4.5 Experimental results 96 Longitudinal trajectory 96 Crossing trajectory with sudden turn 98 4.5 Conclusion 102 4.6 Discussion and outlook 103 5 Summary and outlook 105 5.1 Developed algorithms 105 5.1.1 Adaptive pedaling extraction 105 5.1.2 Normalization of the orientation dependence 105 5.1.3 Model-based pedestrian tracking 106 5.2 Outlook 106 Bibliography 109 List of Acronyms 119 List of Figures 124 List of Tables 125 Appendix 127 A Derivation of the rotation matrix 2.26 127 B Derivation of the mixed radar signal 2.52 129 C Calculation of the marginal association probabilities 4.51 131 Curriculum Vitae 135Sensor-based detection of the near field in the context of highly automated driving is experiencing a noticeable trend in the integration of radar sensor technology. Advances in microelectronics allow the use of high-resolution radar sensors that continuously increase measurement accuracy through efficient processes in angle as well as distance and Doppler. This opens up novel possibilities in determining the geometric and kinematic nature of extended targets in the vehicle environment, which can be used for the specific development of automotive safety systems. In this work, vulnerable road users such as pedestrians and cyclists are analyzed using a high-resolution automotive radar. The focus is on the appearance of the micro-Doppler effect, caused by the objects’ high kinematic degree of freedom. The characteristic radar signatures produced by the micro-Doppler effect allow a clearer perception of the objects and can be directly related to their current state of motion. Novel methods are presented that consider the geometric and kinematic extents of the objects and realize real-time approaches to classification and behavioral indication. When a radar sensor detects an extended target (e.g., bicyclist), its motion state’s fundamental properties can be captured from its micro-Doppler signature within a measurement cycle. The spinning wheels’ velocity distributions allow an adaptive containment of the pedaling motion, whose behavior exhibits essential characteristics concerning predictive accident prediction. Furthermore, extended radar targets are subject to orientation dependence, directly affecting their geometric and kinematic profiles. This can negatively affect both the classification performance and the usability of parameters constituting the radar target’s intention statement. For this purpose, using the cyclist as an example, a method is presented that normalizes the orientation-dependent parameters in range and Doppler and compensates for the measured ambiguities. Furthermore, this paper presents a methodology that estimates a pedestrian’s leg motion over time (tracking) based on the pedestrian’s micro-Doppler profile and reveals valuable object information regarding his motion behavior. To this end, a motion model is developed that approximates the leg’s nonlinear locomotion and represents its high degree of biomechanical variability. By incorporating likelihood-based data association, radar detections are assigned to their respective evoking sources (left and right leg), and limb separation is realized. In contrast to previous tracking methods, the presented methodology shows an increase in the object information’s accuracy. It thus represents a decisive advantage for future driver assistance systems in order to be able to react significantly faster to critical traffic situations.:1 Introduction 1 1.1 Automotive environmental perception 2 1.2 Contributions of this work 4 1.3 Thesis overview 6 2 Automotive radar 9 2.1 Physical fundamentals 9 2.1.1 Radar cross section 9 2.1.2 Radar equation 10 2.1.3 Micro-Doppler effect 11 2.2 Radar measurement model 15 2.2.1 FMCW radar 15 2.2.2 Chirp sequence modulation 17 2.2.3 Direction-of-arrival estimation 22 2.3 Signal processing 25 2.3.1 Target properties 26 2.3.2 Target extraction 28 Power detection 28 Clustering 30 2.3.3 Real radar data example 31 2.4 Conclusion 33 3 Micro-Doppler applications of a cyclist 35 3.1 Physical fundamentals 35 3.1.1 Micro-Doppler signatures of a cyclist 35 3.1.2 Orientation dependence 36 3.2 Cyclist feature extraction 38 3.2.1 Adaptive pedaling extraction 38 Ellipticity constraints 38 Ellipse fitting algorithm 39 3.2.2 Experimental results 42 3.3 Normalization of the orientation dependence 44 3.3.1 Geometric correction 44 3.3.2 Kinematic correction 45 3.3.3 Experimental results 45 3.4 Conclusion 47 3.5 Discussion and outlook 47 4 Micro-Doppler applications of a pedestrian 49 4.1 Pedestrian detection 49 4.1.1 Human kinematics 49 4.1.2 Micro-Doppler signatures of a pedestrian 51 4.1.3 Experimental results 52 Radially moving pedestrian 52 Crossing pedestrian 54 4.2 Pedestrian feature extraction 57 4.2.1 Frequency-based limb separation 58 4.2.2 Extraction of body parts 60 4.2.3 Experimental results 62 4.3 Pedestrian tracking 64 4.3.1 Probabilistic state estimation 65 4.3.2 Gaussian filters 67 4.3.3 The Kalman filter 67 4.3.4 The extended Kalman filter 69 4.3.5 Multiple-object tracking 71 4.3.6 Data association 74 4.3.7 Joint probabilistic data association 80 4.4 Kinematic-based pedestrian tracking 84 4.4.1 Kinematic modeling 84 4.4.2 Tracking motion model 87 4.4.3 4-D radar point cloud 91 4.4.4 Tracking implementation 92 4.4.5 Experimental results 96 Longitudinal trajectory 96 Crossing trajectory with sudden turn 98 4.5 Conclusion 102 4.6 Discussion and outlook 103 5 Summary and outlook 105 5.1 Developed algorithms 105 5.1.1 Adaptive pedaling extraction 105 5.1.2 Normalization of the orientation dependence 105 5.1.3 Model-based pedestrian tracking 106 5.2 Outlook 106 Bibliography 109 List of Acronyms 119 List of Figures 124 List of Tables 125 Appendix 127 A Derivation of the rotation matrix 2.26 127 B Derivation of the mixed radar signal 2.52 129 C Calculation of the marginal association probabilities 4.51 131 Curriculum Vitae 13

    An FPGA-based 77 GHzs RADAR signal processing system for automotive collision avoidance

    Get PDF
    An FPGA implementable Verilog HDL based signal processing algorithm has been developed to detect the range and velocity of target vehicles using a MEMS based 77 GHz LFMCW long range automotive radar. The algorithm generates a tuning voltage to control a GaAs based VCO to produce a triangular chirp signal, controls the operation of MEMS components, and finally processes the IF signal to determine the range and veolicty of the detected targets. The Verilog HDL code has been developed targeting the Xilinx Virtex-5 SX50T FPGA. The developed algorithm enables the MEMS radar to detect 24 targets in an optimum timespan of 6.42 ms in the range of 0.4 to 200 m with a range resolution of 0.19 m and a maximum range error 0.25 m. A maximum relative velocity of ±300 km/h can be determined with a velocity resolution in HDL of 0.95 m/s and a maximum velocity error of 0.83 m/s with a sweep duration of 1 ms

    Perception architecture exploration for automotive cyber-physical systems

    Get PDF
    2022 Spring.Includes bibliographical references.In emerging autonomous and semi-autonomous vehicles, accurate environmental perception by automotive cyber physical platforms are critical for achieving safety and driving performance goals. An efficient perception solution capable of high fidelity environment modeling can improve Advanced Driver Assistance System (ADAS) performance and reduce the number of lives lost to traffic accidents as a result of human driving errors. Enabling robust perception for vehicles with ADAS requires solving multiple complex problems related to the selection and placement of sensors, object detection, and sensor fusion. Current methods address these problems in isolation, which leads to inefficient solutions. For instance, there is an inherent accuracy versus latency trade-off between one stage and two stage object detectors which makes selecting an enhanced object detector from a diverse range of choices difficult. Further, even if a perception architecture was equipped with an ideal object detector performing high accuracy and low latency inference, the relative position and orientation of selected sensors (e.g., cameras, radars, lidars) determine whether static or dynamic targets are inside the field of view of each sensor or in the combined field of view of the sensor configuration. If the combined field of view is too small or contains redundant overlap between individual sensors, important events and obstacles can go undetected. Conversely, if the combined field of view is too large, the number of false positive detections will be high in real time and appropriate sensor fusion algorithms are required for filtering. Sensor fusion algorithms also enable tracking of non-ego vehicles in situations where traffic is highly dynamic or there are many obstacles on the road. Position and velocity estimation using sensor fusion algorithms have a lower margin for error when trajectories of other vehicles in traffic are in the vicinity of the ego vehicle, as incorrect measurement can cause accidents. Due to the various complex inter-dependencies between design decisions, constraints and optimization goals a framework capable of synthesizing perception solutions for automotive cyber physical platforms is not trivial. We present a novel perception architecture exploration framework for automotive cyber- physical platforms capable of global co-optimization of deep learning and sensing infrastructure. The framework is capable of exploring the synthesis of heterogeneous sensor configurations towards achieving vehicle autonomy goals. As our first contribution, we propose a novel optimization framework called VESPA that explores the design space of sensor placement locations and orientations to find the optimal sensor configuration for a vehicle. We demonstrate how our framework can obtain optimal sensor configurations for heterogeneous sensors deployed across two contemporary real vehicles. We then utilize VESPA to create a comprehensive perception architecture synthesis framework called PASTA. This framework enables robust perception for vehicles with ADAS requiring solutions to multiple complex problems related not only to the selection and placement of sensors but also object detection, and sensor fusion as well. Experimental results with the Audi-TT and BMW Minicooper vehicles show how PASTA can intelligently traverse the perception design space to find robust, vehicle-specific solutions
    • …
    corecore