3,658 research outputs found

    What is Computational Intelligence and where is it going?

    Get PDF
    What is Computational Intelligence (CI) and what are its relations with Artificial Intelligence (AI)? A brief survey of the scope of CI journals and books with ``computational intelligence'' in their title shows that at present it is an umbrella for three core technologies (neural, fuzzy and evolutionary), their applications, and selected fashionable pattern recognition methods. At present CI has no comprehensive foundations and is more a bag of tricks than a solid branch of science. The change of focus from methods to challenging problems is advocated, with CI defined as a part of computer and engineering sciences devoted to solution of non-algoritmizable problems. In this view AI is a part of CI focused on problems related to higher cognitive functions, while the rest of the CI community works on problems related to perception and control, or lower cognitive functions. Grand challenges on both sides of this spectrum are addressed

    A Computational View of Market Efficiency

    Get PDF
    We propose to study market efficiency from a computational viewpoint. Borrowing from theoretical computer science, we define a market to be \emph{efficient with respect to resources SS} (e.g., time, memory) if no strategy using resources SS can make a profit. As a first step, we consider memory-mm strategies whose action at time tt depends only on the mm previous observations at times t−m,...,t−1t-m,...,t-1. We introduce and study a simple model of market evolution, where strategies impact the market by their decision to buy or sell. We show that the effect of optimal strategies using memory mm can lead to "market conditions" that were not present initially, such as (1) market bubbles and (2) the possibility for a strategy using memory mâ€Č>mm' > m to make a bigger profit than was initially possible. We suggest ours as a framework to rationalize the technological arms race of quantitative trading firms

    New perspectives on realism, tractability, and complexity in economics

    Get PDF
    Fuzzy logic and genetic algorithms are used to rework more realistic (and more complex) models of competitive markets. The resulting equilibria are significantly different from the ones predicted from the usual static analysis; the methodology solves the Walrasian problem of how markets can reach equilibrium, starting with firms trading at disparate prices. The modified equilibria found in these complex market models involve some mutual self-restraint on the part of the agents involved, relative to economically rational behaviour. Research (using similar techniques) into the evolution of collaborative behaviours in economics, and of altruism generally, is summarized; and the joint significance of these two bodies of work for public policy is reviewed. The possible extension of the fuzzy/ genetic methodology to other technical aspects of economics (including international trade theory, and development) is also discussed, as are the limitations to the usefulness of any type of theory in political domains. For the latter purpose, a more differentiated concept of rationality, appropriate to ill-structured choices, is developed. The philosophical case for laissez-faire policies is considered briefly; and the prospects for change in the way we ‘do economics’ are analysed

    Modeling economic systems as locally-constructive sequential games

    Get PDF
    Real-world economies are open-ended dynamic systems consisting of heterogeneous interacting participants. Human participants are decision-makers who strategically take into account the past actions and potential future actions of other participants. All participants are forced to be locally constructive, meaning their actions at any given time must be based on their local states; and participant actions at any given time affect future local states. Taken together, these essential properties imply real-world economies are locally-constructive sequential games. This paper discusses a modeling approach, Agent-based Computational Economics, that permits researchers to study economic systems from this point of view. ACE modeling principles and objectives are first concisely presented and explained. The remainder of the paper then highlights challenging issues and edgier explorations that ACE researchers are currently pursuing

    Behavioural Economics: Classical and Modern

    Get PDF
    In this paper, the origins and development of behavioural economics, beginning with the pioneering works of Herbert Simon (1953) and Ward Edwards (1954), is traced, described and (critically) discussed, in some detail. Two kinds of behavioural economics – classical and modern – are attributed, respectively, to the two pioneers. The mathematical foundations of classical behavioural economics is identified, largely, to be in the theory of computation and computational complexity; the corresponding mathematical basis for modern behavioural economics is, on the other hand, claimed to be a notion of subjective probability (at least at its origins in the works of Ward Edwards). The economic theories of behavior, challenging various aspects of 'orthodox' theory, were decisively influenced by these two mathematical underpinnings of the two theoriesClassical Behavioural Economics, Modern Behavioural Economics, Subjective Probability, Model of Computation, Computational Complexity. Subjective Expected Utility

    New perspectives on realism, tractability, and complexity in economics

    Get PDF
    Fuzzy logic and genetic algorithms are used to rework more realistic (and more complex) models of competitive markets. The resulting equilibria are significantly different from the ones predicted from the usual static analysis; the methodology solves the Walrasian problem of how markets can reach equilibrium, starting with firms trading at disparate prices. The modified equilibria found in these complex market models involve some mutual self-restraint on the part of the agents involved, relative to economically rational behaviour. Research (using similar techniques) into the evolution of collaborative behaviours in economics, and of altruism generally, is summarized; and the joint significance of these two bodies of work for public policy is reviewed. The possible extension of the fuzzy/ genetic methodology to other technical aspects of economics (including international trade theory, and development) is also discussed, as are the limitations to the usefulness of any type of theory in political domains. For the latter purpose, a more differentiated concept of rationality, appropriate to ill-structured choices, is developed. The philosophical case for laissez-faire policies is considered briefly; and the prospects for change in the way we ‘do economics’ are analysed.Fuzzy logic; genetic algorithms; complexity; emergence; rationality; ill-structured choice; equilibrium; Walrasian Crier; paradigm change;

    Social Welfare Maximization Auction in Edge Computing Resource Allocation for Mobile Blockchain

    Full text link
    Blockchain, an emerging decentralized security system, has been applied in many applications, such as bitcoin, smart grid, and Internet-of-Things. However, running the mining process may cost too much energy consumption and computing resource usage on handheld devices, which restricts the use of blockchain in mobile environments. In this paper, we consider deploying edge computing service to support the mobile blockchain. We propose an auction-based edge computing resource market of the edge computing service provider. Since there is competition among miners, the allocative externalities (positive and negative) are taken into account in the model. In our auction mechanism, we maximize the social welfare while guaranteeing the truthfulness, individual rationality and computational efficiency. Based on blockchain mining experiment results, we define a hash power function that characterizes the probability of successfully mining a block. Through extensive simulations, we evaluate the performance of our auction mechanism which shows that our edge computing resources market model can efficiently solve the social welfare maximization problem for the edge computing service provider

    Evolutionary computation for macroeconomic forecasting

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10614-017-9767-4The main objective of this study is twofold. First, we propose an empirical modelling approach based on genetic programming to forecast economic growth by means of survey data on expectations. We use evolutionary algorithms to estimate a symbolic regression that links survey-based expectations to a quantitative variable used as a yardstick, deriving mathematical functional forms that approximate the target variable. The set of empirically-generated proxies of economic growth are used as building blocks to forecast the evolution of GDP. Second, we use these estimates of GDP to assess the impact of the 2008 financial crisis on the accuracy of agents’ expectations about the evolution of the economic activity in four Scandinavian economies. While we find an improvement in the capacity of agents’ to anticipate economic growth after the crisis, predictive accuracy worsens in relation to the period prior to the crisis. The most accurate GDP forecasts are obtained for Sweden.Peer ReviewedPostprint (author's final draft
    • 

    corecore