2,984 research outputs found

    Accurate and efficient face recognition from video

    Full text link
    As a problem of high practical appeal but outstanding challenges, computer-based face recognition remains a topic of extensive research attention. In this paper we are specifically interested in the task of identifying a person from multiple training and query images. Thus, a novel method is proposed which advances the state-of-the-art in set based face recognition. Our method is based on a previously described invariant in the form of generic shape-illumination effects. The contributions include: (i) an analysis of computational demands of the original method and a demonstration of its practical limitations, (ii) a novel representation of personal appearance in the form of linked mixture models in image and pose-signature spaces, and (iii) an efficient (in terms of storage needs and matching time) manifold re-illumination algorithm based on the aforementioned representation. An evaluation and comparison of the proposed method with the original generic shape-illumination algorithm shows that comparably high recognition rates are achieved on a large data set (1.5% error on 700 face sets containing 100 individuals and extreme illumination variation) with a dramatic improvement in matching speed (over 700 times for sets containing 1600 faces) and storage requirements (independent of the number of training images)

    Illumination Processing in Face Recognition

    Get PDF

    Fast Landmark Localization with 3D Component Reconstruction and CNN for Cross-Pose Recognition

    Full text link
    Two approaches are proposed for cross-pose face recognition, one is based on the 3D reconstruction of facial components and the other is based on the deep Convolutional Neural Network (CNN). Unlike most 3D approaches that consider holistic faces, the proposed approach considers 3D facial components. It segments a 2D gallery face into components, reconstructs the 3D surface for each component, and recognizes a probe face by component features. The segmentation is based on the landmarks located by a hierarchical algorithm that combines the Faster R-CNN for face detection and the Reduced Tree Structured Model for landmark localization. The core part of the CNN-based approach is a revised VGG network. We study the performances with different settings on the training set, including the synthesized data from 3D reconstruction, the real-life data from an in-the-wild database, and both types of data combined. We investigate the performances of the network when it is employed as a classifier or designed as a feature extractor. The two recognition approaches and the fast landmark localization are evaluated in extensive experiments, and compared to stateof-the-art methods to demonstrate their efficacy.Comment: 14 pages, 12 figures, 4 table

    Hallucinating optimal high-dimensional subspaces

    Full text link
    Linear subspace representations of appearance variation are pervasive in computer vision. This paper addresses the problem of robustly matching such subspaces (computing the similarity between them) when they are used to describe the scope of variations within sets of images of different (possibly greatly so) scales. A naive solution of projecting the low-scale subspace into the high-scale image space is described first and subsequently shown to be inadequate, especially at large scale discrepancies. A successful approach is proposed instead. It consists of (i) an interpolated projection of the low-scale subspace into the high-scale space, which is followed by (ii) a rotation of this initial estimate within the bounds of the imposed ``downsampling constraint''. The optimal rotation is found in the closed-form which best aligns the high-scale reconstruction of the low-scale subspace with the reference it is compared to. The method is evaluated on the problem of matching sets of (i) face appearances under varying illumination and (ii) object appearances under varying viewpoint, using two large data sets. In comparison to the naive matching, the proposed algorithm is shown to greatly increase the separation of between-class and within-class similarities, as well as produce far more meaningful modes of common appearance on which the match score is based.Comment: Pattern Recognition, 201
    • …
    corecore