3,174 research outputs found

    Event-based Vision: A Survey

    Get PDF
    Event cameras are bio-inspired sensors that differ from conventional frame cameras: Instead of capturing images at a fixed rate, they asynchronously measure per-pixel brightness changes, and output a stream of events that encode the time, location and sign of the brightness changes. Event cameras offer attractive properties compared to traditional cameras: high temporal resolution (in the order of microseconds), very high dynamic range (140 dB vs. 60 dB), low power consumption, and high pixel bandwidth (on the order of kHz) resulting in reduced motion blur. Hence, event cameras have a large potential for robotics and computer vision in challenging scenarios for traditional cameras, such as low-latency, high speed, and high dynamic range. However, novel methods are required to process the unconventional output of these sensors in order to unlock their potential. This paper provides a comprehensive overview of the emerging field of event-based vision, with a focus on the applications and the algorithms developed to unlock the outstanding properties of event cameras. We present event cameras from their working principle, the actual sensors that are available and the tasks that they have been used for, from low-level vision (feature detection and tracking, optic flow, etc.) to high-level vision (reconstruction, segmentation, recognition). We also discuss the techniques developed to process events, including learning-based techniques, as well as specialized processors for these novel sensors, such as spiking neural networks. Additionally, we highlight the challenges that remain to be tackled and the opportunities that lie ahead in the search for a more efficient, bio-inspired way for machines to perceive and interact with the world

    The Evolution of First Person Vision Methods: A Survey

    Full text link
    The emergence of new wearable technologies such as action cameras and smart-glasses has increased the interest of computer vision scientists in the First Person perspective. Nowadays, this field is attracting attention and investments of companies aiming to develop commercial devices with First Person Vision recording capabilities. Due to this interest, an increasing demand of methods to process these videos, possibly in real-time, is expected. Current approaches present a particular combinations of different image features and quantitative methods to accomplish specific objectives like object detection, activity recognition, user machine interaction and so on. This paper summarizes the evolution of the state of the art in First Person Vision video analysis between 1997 and 2014, highlighting, among others, most commonly used features, methods, challenges and opportunities within the field.Comment: First Person Vision, Egocentric Vision, Wearable Devices, Smart Glasses, Computer Vision, Video Analytics, Human-machine Interactio

    Bio-inspired retinal optic flow perception in robotic navigation

    Get PDF
    This thesis concerns the bio-inspired visual perception of motion with emphasis on locomotion targeting robotic systems. By continuously registering moving visual features in the human retina, a sensation of a visual flow cue is created. An interpretation of visual flow cues forms a low-level motion perception more known as retinal optic flow. Retinal optic flow is often mentioned and credited in human locomotor research but only in theory and simulated environments so far. Reconstructing the retinal optic flow fields using existing methods of estimating optic flow and experimental data from naive test subjects provides further insight into how it interacts with intermittent control behavior and dynamic gazing. The retinal optic flow is successfully demonstrated during a vehicular steering task scenario and further supports the idea that humans may use such perception to aid their ability to correct their steering during navigation.To achieve the reconstruction and estimation of the retinal optic flow, a set of optic flow estimators were fairly and systematically evaluated on the criteria on run-time predictability and reliability, and performance accuracy. A formalized methodology using containerization technology for performing the benchmarking was developed to generate the results. Furthermore, the readiness in road vehicles for the adoption of modern robotic software and related software processes were investigated. This was done with special emphasis on real-time computing and introducing containerization and microservice design paradigm. By doing so, continuous integration, continuous deployment, and continuous experimentation were enabled in order to aid further development and research. With the method of estimating retinal optic flow and its interaction with intermittent control, a more complete vision-based bionic steering control model is to be proposed and tested in a live robotic system

    End-to-End Learning of Representations for Asynchronous Event-Based Data

    Full text link
    Event cameras are vision sensors that record asynchronous streams of per-pixel brightness changes, referred to as "events". They have appealing advantages over frame-based cameras for computer vision, including high temporal resolution, high dynamic range, and no motion blur. Due to the sparse, non-uniform spatiotemporal layout of the event signal, pattern recognition algorithms typically aggregate events into a grid-based representation and subsequently process it by a standard vision pipeline, e.g., Convolutional Neural Network (CNN). In this work, we introduce a general framework to convert event streams into grid-based representations through a sequence of differentiable operations. Our framework comes with two main advantages: (i) allows learning the input event representation together with the task dedicated network in an end to end manner, and (ii) lays out a taxonomy that unifies the majority of extant event representations in the literature and identifies novel ones. Empirically, we show that our approach to learning the event representation end-to-end yields an improvement of approximately 12% on optical flow estimation and object recognition over state-of-the-art methods.Comment: To appear at ICCV 201

    Biologically inspired intensity and depth image edge extraction

    Get PDF
    In recent years artificial vision research has moved from focusing on the use of only intensity images to include using depth images, or RGB-D combinations due to the recent development of low cost depth cameras. However, depth images require a lot of storage and processing requirements. In addition, it is challenging to extract relevant features from depth images in real-time. Researchers have sought inspiration from biology in order to overcome these challenges resulting in biologically inspired feature extraction methods. By taking inspiration from nature it may be possible to reduce redundancy, extract relevant features, and process an image efficiently by emulating biological visual processes. In this paper, we present a depth and intensity image feature extraction approach that has been inspired by biological vision systems. Through the use of biologically inspired spiking neural networks we emulate functional computational aspects of biological visual systems. Results demonstrate that the proposed bio-inspired artificial vision system has increased performance over existing computer vision feature extraction approaches

    Neural theory for the perception of causal actions

    Get PDF
    The efficient prediction of the behavior of others requires the recognition of their actions and an understanding of their action goals. In humans, this process is fast and extremely robust, as demonstrated by classical experiments showing that human observers reliably judge causal relationships and attribute interactive social behavior to strongly simplified stimuli consisting of simple moving geometrical shapes. While psychophysical experiments have identified critical visual features that determine the perception of causality and agency from such stimuli, the underlying detailed neural mechanisms remain largely unclear, and it is an open question why humans developed this advanced visual capability at all. We created pairs of naturalistic and abstract stimuli of hand actions that were exactly matched in terms of their motion parameters. We show that varying critical stimulus parameters for both stimulus types leads to very similar modulations of the perception of causality. However, the additional form information about the hand shape and its relationship with the object supports more fine-grained distinctions for the naturalistic stimuli. Moreover, we show that a physiologically plausible model for the recognition of goal-directed hand actions reproduces the observed dependencies of causality perception on critical stimulus parameters. These results support the hypothesis that selectivity for abstract action stimuli might emerge from the same neural mechanisms that underlie the visual processing of natural goal-directed action stimuli. Furthermore, the model proposes specific detailed neural circuits underlying this visual function, which can be evaluated in future experiments.Seventh Framework Programme (European Commission) (Tango Grant FP7-249858-TP3 and AMARSi Grant FP7-ICT- 248311)Deutsche Forschungsgemeinschaft (Grant GI 305/4-1)Hermann and Lilly Schilling Foundation for Medical Researc
    • …
    corecore