1,142 research outputs found

    Computationally Sound, Automated Proofs for Security Protocols

    Get PDF
    Since the 1980s, two approaches have been developed for analyzing security protocols. One of the approaches relies on a computational model that considers issues of complexity and probability. This approach captures a strong notion of security, guaranteed against all probabilistic polynomial-time attacks. The other approach relies on a symbolic model of protocol executions in which cryptographic primitives are treated as black boxes. Since the seminal work of Dolev and Yao, it has been realized that this latter approach enables significantly simpler and often automated proofs. However, the guarantees that it offers have been quite unclear. In this paper, we show that it is possible to obtain the best of both worlds: fully automated proofs and strong, clear security guarantees. Specifically, for the case of protocols that use signatures and asymmetric encryption, we establish that symbolic integrity and secrecy proofs are sound with respect to the computational model. The main new challenges concern secrecy properties for which we obtain the first soundness result for the case of active adversaries. Our proofs are carried out using Casrul, a fully automated tool

    Computational Soundness for Dalvik Bytecode

    Full text link
    Automatically analyzing information flow within Android applications that rely on cryptographic operations with their computational security guarantees imposes formidable challenges that existing approaches for understanding an app's behavior struggle to meet. These approaches do not distinguish cryptographic and non-cryptographic operations, and hence do not account for cryptographic protections: f(m) is considered sensitive for a sensitive message m irrespective of potential secrecy properties offered by a cryptographic operation f. These approaches consequently provide a safe approximation of the app's behavior, but they mistakenly classify a large fraction of apps as potentially insecure and consequently yield overly pessimistic results. In this paper, we show how cryptographic operations can be faithfully included into existing approaches for automated app analysis. To this end, we first show how cryptographic operations can be expressed as symbolic abstractions within the comprehensive Dalvik bytecode language. These abstractions are accessible to automated analysis, and they can be conveniently added to existing app analysis tools using minor changes in their semantics. Second, we show that our abstractions are faithful by providing the first computational soundness result for Dalvik bytecode, i.e., the absence of attacks against our symbolically abstracted program entails the absence of any attacks against a suitable cryptographic program realization. We cast our computational soundness result in the CoSP framework, which makes the result modular and composable.Comment: Technical report for the ACM CCS 2016 conference pape

    Actor-network procedures: Modeling multi-factor authentication, device pairing, social interactions

    Full text link
    As computation spreads from computers to networks of computers, and migrates into cyberspace, it ceases to be globally programmable, but it remains programmable indirectly: network computations cannot be controlled, but they can be steered by local constraints on network nodes. The tasks of "programming" global behaviors through local constraints belong to the area of security. The "program particles" that assure that a system of local interactions leads towards some desired global goals are called security protocols. As computation spreads beyond cyberspace, into physical and social spaces, new security tasks and problems arise. As networks are extended by physical sensors and controllers, including the humans, and interlaced with social networks, the engineering concepts and techniques of computer security blend with the social processes of security. These new connectors for computational and social software require a new "discipline of programming" of global behaviors through local constraints. Since the new discipline seems to be emerging from a combination of established models of security protocols with older methods of procedural programming, we use the name procedures for these new connectors, that generalize protocols. In the present paper we propose actor-networks as a formal model of computation in heterogenous networks of computers, humans and their devices; and we introduce Procedure Derivation Logic (PDL) as a framework for reasoning about security in actor-networks. On the way, we survey the guiding ideas of Protocol Derivation Logic (also PDL) that evolved through our work in security in last 10 years. Both formalisms are geared towards graphic reasoning and tool support. We illustrate their workings by analysing a popular form of two-factor authentication, and a multi-channel device pairing procedure, devised for this occasion.Comment: 32 pages, 12 figures, 3 tables; journal submission; extended references, added discussio

    How to prove security of communication protocols? A discussion on the soundness of formal models w.r.t. computational ones.

    Get PDF
    Security protocols are short programs that aim at securing communication over a public network. Their design is known to be error-prone with flaws found years later. That is why they deserve a careful security analysis, with rigorous proofs. Two main lines of research have been (independently) developed to analyse the security of protocols. On the one hand, formal methods provide with symbolic models and often automatic proofs. On the other hand, cryptographic models propose a tighter modeling but proofs are more difficult to write and to check. An approach developed during the last decade consists in bridging the two approaches, showing that symbolic models are sound w.r.t. symbolic ones, yielding strong security guarantees using automatic tools. These results have been developed for several cryptographic primitives (e.g. symmetric and asymmetric encryption, signatures, hash) and security properties. While proving soundness of symbolic models is a very promising approach, several technical details are often not satisfactory. Focusing on symmetric encryption, we describe the difficulties and limitations of the available results
    • …
    corecore