157 research outputs found

    MMSE adaptive waveform design for active sensing with applications to MIMO radar

    Get PDF

    A compressed sensing approach to block-iterative equalization: connections and applications to radar imaging reconstruction

    Get PDF
    The widespread of underdetermined systems has brought forth a variety of new algorithmic solutions, which capitalize on the Compressed Sensing (CS) of sparse data. While well known greedy or iterative threshold type of CS recursions take the form of an adaptive filter followed by a proximal operator, this is no different in spirit from the role of block iterative decision-feedback equalizers (BI-DFE), where structure is roughly exploited by the signal constellation slicer. By taking advantage of the intrinsic sparsity of signal modulations in a communications scenario, the concept of interblock interference (IBI) can be approached more cunningly in light of CS concepts, whereby the optimal feedback of detected symbols is devised adaptively. The new DFE takes the form of a more efficient re-estimation scheme, proposed under recursive-least-squares based adaptations. Whenever suitable, these recursions are derived under a reduced-complexity, widely-linear formulation, which further reduces the minimum-mean-square-error (MMSE) in comparison with traditional strictly-linear approaches. Besides maximizing system throughput, the new algorithms exhibit significantly higher performance when compared to existing methods. Our reasoning will also show that a properly formulated BI-DFE turns out to be a powerful CS algorithm itself. A new algorithm, referred to as CS-Block DFE (CS-BDFE) exhibits improved convergence and detection when compared to first order methods, thus outperforming the state-of-the-art Complex Approximate Message Passing (CAMP) recursions. The merits of the new recursions are illustrated under a novel 3D MIMO Radar formulation, where the CAMP algorithm is shown to fail with respect to important performance measures.A proliferação de sistemas sub-determinados trouxe a tona uma gama de novas soluções algorítmicas, baseadas no sensoriamento compressivo (CS) de dados esparsos. As recursões do tipo greedy e de limitação iterativa para CS se apresentam comumente como um filtro adaptativo seguido de um operador proximal, não muito diferente dos equalizadores de realimentação de decisão iterativos em blocos (BI-DFE), em que um decisor explora a estrutura do sinal de constelação. A partir da esparsidade intrínseca presente na modulação de sinais no contexto de comunicações, a interferência entre blocos (IBI) pode ser abordada utilizando-se o conceito de CS, onde a realimentação ótima de símbolos detectados é realizada de forma adaptativa. O novo DFE se apresenta como um esquema mais eficiente de reestimação, baseado na atualização por mínimos quadrados recursivos (RLS). Sempre que possível estas recursões são propostas via formulação linear no sentido amplo, o que reduz ainda mais o erro médio quadrático mínimo (MMSE) em comparação com abordagens tradicionais. Além de maximizar a taxa de transferência de informação, o novo algoritmo exibe um desempenho significativamente superior quando comparado aos métodos existentes. Também mostraremos que um equalizador BI-DFE formulado adequadamente se torna um poderoso algoritmo de CS. O novo algoritmo CS-BDFE apresenta convergência e detecção aprimoradas, quando comparado a métodos de primeira ordem, superando as recursões de Passagem de Mensagem Aproximada para Complexos (CAMP). Os méritos das novas recursões são ilustrados através de um modelo tridimensional para radares MIMO recentemente proposto, onde o algoritmo CAMP falha em aspectos importantes de medidas de desempenho

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    The University Defence Research Collaboration In Signal Processing

    Get PDF
    This chapter describes the development of algorithms for automatic detection of anomalies from multi-dimensional, undersampled and incomplete datasets. The challenge in this work is to identify and classify behaviours as normal or abnormal, safe or threatening, from an irregular and often heterogeneous sensor network. Many defence and civilian applications can be modelled as complex networks of interconnected nodes with unknown or uncertain spatio-temporal relations. The behavior of such heterogeneous networks can exhibit dynamic properties, reflecting evolution in both network structure (new nodes appearing and existing nodes disappearing), as well as inter-node relations. The UDRC work has addressed not only the detection of anomalies, but also the identification of their nature and their statistical characteristics. Normal patterns and changes in behavior have been incorporated to provide an acceptable balance between true positive rate, false positive rate, performance and computational cost. Data quality measures have been used to ensure the models of normality are not corrupted by unreliable and ambiguous data. The context for the activity of each node in complex networks offers an even more efficient anomaly detection mechanism. This has allowed the development of efficient approaches which not only detect anomalies but which also go on to classify their behaviour
    corecore