76,803 research outputs found

    Choosing the Right Spatial Weighting Matrix in a Quantile Regression Model

    Get PDF
    This paper proposes computationally tractable methods for selecting the appropriate spatial weighting matrix in the context of a spatial quantile regression model. This selection is a notoriously difficult problem even in linear spatial models and is even more difficult in a quantile regression setup. The proposal is illustrated by an empirical example and manages to produce tractable models. One important feature of the proposed methodology is that by allowing different degrees and forms of spatial dependence across quantiles it further relaxes the usual quantile restriction attributable to the linear quantile regression. In this way we can obtain a more robust, with regard to potential functional misspecification, model, but nevertheless preserve the parametric rate of convergence and the established inferential apparatus associated with the linear quantile regression approach

    Spatial models generated by nested stochastic partial differential equations, with an application to global ozone mapping

    Get PDF
    A new class of stochastic field models is constructed using nested stochastic partial differential equations (SPDEs). The model class is computationally efficient, applicable to data on general smooth manifolds, and includes both the Gaussian Mat\'{e}rn fields and a wide family of fields with oscillating covariance functions. Nonstationary covariance models are obtained by spatially varying the parameters in the SPDEs, and the model parameters are estimated using direct numerical optimization, which is more efficient than standard Markov Chain Monte Carlo procedures. The model class is used to estimate daily ozone maps using a large data set of spatially irregular global total column ozone data.Comment: Published in at http://dx.doi.org/10.1214/10-AOAS383 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Most Likely Separation of Intensity and Warping Effects in Image Registration

    Full text link
    This paper introduces a class of mixed-effects models for joint modeling of spatially correlated intensity variation and warping variation in 2D images. Spatially correlated intensity variation and warp variation are modeled as random effects, resulting in a nonlinear mixed-effects model that enables simultaneous estimation of template and model parameters by optimization of the likelihood function. We propose an algorithm for fitting the model which alternates estimation of variance parameters and image registration. This approach avoids the potential estimation bias in the template estimate that arises when treating registration as a preprocessing step. We apply the model to datasets of facial images and 2D brain magnetic resonance images to illustrate the simultaneous estimation and prediction of intensity and warp effects
    • …
    corecore