5,112 research outputs found

    Fast Pixel Space Convolution for CMB Surveys with Asymmetric Beams and Complex Scan Strategies: FEBeCoP

    Full text link
    Precise measurement of the angular power spectrum of the Cosmic Microwave Background (CMB) temperature and polarization anisotropy can tightly constrain many cosmological models and parameters. However, accurate measurements can only be realized in practice provided all major systematic effects have been taken into account. Beam asymmetry, coupled with the scan strategy, is a major source of systematic error in scanning CMB experiments such as Planck, the focus of our current interest. We envision Monte Carlo methods to rigorously study and account for the systematic effect of beams in CMB analysis. Toward that goal, we have developed a fast pixel space convolution method that can simulate sky maps observed by a scanning instrument, taking into account real beam shapes and scan strategy. The essence is to pre-compute the "effective beams" using a computer code, "Fast Effective Beam Convolution in Pixel space" (FEBeCoP), that we have developed for the Planck mission. The code computes effective beams given the focal plane beam characteristics of the Planck instrument and the full history of actual satellite pointing, and performs very fast convolution of sky signals using the effective beams. In this paper, we describe the algorithm and the computational scheme that has been implemented. We also outline a few applications of the effective beams in the precision analysis of Planck data, for characterizing the CMB anisotropy and for detecting and measuring properties of point sources.Comment: 26 pages, 15 figures. New subsection on beam/PSF statistics, new and better figures, more explicit algebra for polarized beams, added explanatory text at many places following referees comments [Accepted for publication in ApJS

    Infinite Mixtures of Multivariate Gaussian Processes

    Full text link
    This paper presents a new model called infinite mixtures of multivariate Gaussian processes, which can be used to learn vector-valued functions and applied to multitask learning. As an extension of the single multivariate Gaussian process, the mixture model has the advantages of modeling multimodal data and alleviating the computationally cubic complexity of the multivariate Gaussian process. A Dirichlet process prior is adopted to allow the (possibly infinite) number of mixture components to be automatically inferred from training data, and Markov chain Monte Carlo sampling techniques are used for parameter and latent variable inference. Preliminary experimental results on multivariate regression show the feasibility of the proposed model.Comment: Proceedings of the International Conference on Machine Learning and Cybernetics, 2013, pages 1011-101

    Fast Kernel Approximations for Latent Force Models and Convolved Multiple-Output Gaussian processes

    Full text link
    A latent force model is a Gaussian process with a covariance function inspired by a differential operator. Such covariance function is obtained by performing convolution integrals between Green's functions associated to the differential operators, and covariance functions associated to latent functions. In the classical formulation of latent force models, the covariance functions are obtained analytically by solving a double integral, leading to expressions that involve numerical solutions of different types of error functions. In consequence, the covariance matrix calculation is considerably expensive, because it requires the evaluation of one or more of these error functions. In this paper, we use random Fourier features to approximate the solution of these double integrals obtaining simpler analytical expressions for such covariance functions. We show experimental results using ordinary differential operators and provide an extension to build general kernel functions for convolved multiple output Gaussian processes.Comment: 10 pages, 4 figures, accepted by UAI 201

    Variational Inference of Joint Models using Multivariate Gaussian Convolution Processes

    Full text link
    We present a non-parametric prognostic framework for individualized event prediction based on joint modeling of both longitudinal and time-to-event data. Our approach exploits a multivariate Gaussian convolution process (MGCP) to model the evolution of longitudinal signals and a Cox model to map time-to-event data with longitudinal data modeled through the MGCP. Taking advantage of the unique structure imposed by convolved processes, we provide a variational inference framework to simultaneously estimate parameters in the joint MGCP-Cox model. This significantly reduces computational complexity and safeguards against model overfitting. Experiments on synthetic and real world data show that the proposed framework outperforms state-of-the art approaches built on two-stage inference and strong parametric assumptions

    Efficient Bayesian Nonparametric Modelling of Structured Point Processes

    Full text link
    This paper presents a Bayesian generative model for dependent Cox point processes, alongside an efficient inference scheme which scales as if the point processes were modelled independently. We can handle missing data naturally, infer latent structure, and cope with large numbers of observed processes. A further novel contribution enables the model to work effectively in higher dimensional spaces. Using this method, we achieve vastly improved predictive performance on both 2D and 1D real data, validating our structured approach.Comment: Presented at UAI 2014. Bibtex: @inproceedings{structcoxpp14_UAI, Author = {Tom Gunter and Chris Lloyd and Michael A. Osborne and Stephen J. Roberts}, Title = {Efficient Bayesian Nonparametric Modelling of Structured Point Processes}, Booktitle = {Uncertainty in Artificial Intelligence (UAI)}, Year = {2014}
    corecore