3,560 research outputs found

    Pervasive Parallel And Distributed Computing In A Liberal Arts College Curriculum

    Get PDF
    We present a model for incorporating parallel and distributed computing (PDC) throughout an undergraduate CS curriculum. Our curriculum is designed to introduce students early to parallel and distributed computing topics and to expose students to these topics repeatedly in the context of a wide variety of CS courses. The key to our approach is the development of a required intermediate-level course that serves as a introduction to computer systems and parallel computing. It serves as a requirement for every CS major and minor and is a prerequisite to upper-level courses that expand on parallel and distributed computing topics in different contexts. With the addition of this new course, we are able to easily make room in upper-level courses to add and expand parallel and distributed computing topics. The goal of our curricular design is to ensure that every graduating CS major has exposure to parallel and distributed computing, with both a breadth and depth of coverage. Our curriculum is particularly designed for the constraints of a small liberal arts college, however, much of its ideas and its design are applicable to any undergraduate CS curriculum

    A review into the factors affecting declines in undergraduate Computer Science enrolments and approaches for solving this problem

    Get PDF
    There has been a noticeable drop in enrolments in Computer Science (CS) courses and interest in CS careers in recent years while demand for CS skills is increasing dramatically. Not only are such skills useful for CS jobs but for all forms of business and to some extent personal lives as Information Technology (IT) is becoming ubiquitous and essential for most aspects of modern life. Therefore it is essential to address this lack of interest and skills to not only fill the demand for CS employees but to provide students with the CS skills they need for modern life especially for improving their employability and skills for further study. This report looks at possible reasons for the lack of interest in CS and different approaches used to enhance CS education and improve the appeal of CS

    Bricklayer: An Authentic Introduction to the Functional Programming Language SML

    Full text link
    Functional programming languages are seen by many as instrumental to effectively utilizing the computational power of multi-core platforms. As a result, there is growing interest to introduce functional programming and functional thinking as early as possible within the computer science curriculum. Bricklayer is an API, written in SML, that provides a set of abstractions for creating LEGO artifacts which can be viewed using LEGO Digital Designer. The goal of Bricklayer is to create a problem space (i.e., a set of LEGO artifacts) that is accessible and engaging to programmers (especially novice programmers) while providing an authentic introduction to the functional programming language SML.Comment: In Proceedings TFPIE 2014, arXiv:1412.473

    Computing as the 4th “R”: a general education approach to computing education

    Get PDF
    Computing and computation are increasingly pervading our lives, careers, and societies - a change driving interest in computing education at the secondary level. But what should define a "general education" computing course at this level? That is, what would you want every person to know, assuming they never take another computing course? We identify possible outcomes for such a course through the experience of designing and implementing a general education university course utilizing best-practice pedagogies. Though we nominally taught programming, the design of the course led students to report gaining core, transferable skills and the confidence to employ them in their future. We discuss how various aspects of the course likely contributed to these gains. Finally, we encourage the community to embrace the challenge of teaching general education computing in contrast to and in conjunction with existing curricula designed primarily to interest students in the field

    QuizPower: a mobile app with app inventor and XAMPP service integration

    Get PDF
    This paper details the development of a mobile app for the Android operating system using MIT App Inventor language and development platform. The app, Quiz Power, provides students a way to study course material in an engaging and effective manner. At its current stage the app is intended strictly for use in a mobile app with App Inventor course, although it provides the facility to be adapted for other courses by simply changing the web data store. Development occurred during the spring semester of 2013. Students in the course played a vital role in providing feedback on course material, which would be the basis for the structure of the quiz as well as the questions. The significance of the project is the integration of the MIT App Inventor service with a web service implemented and managed by the department

    The Case for Improving U.S. Computer Science Education

    Get PDF
    Despite the growing use of computers and software in every facet of our economy, not until recently has computer science education begun to gain traction in American school systems. The current focus on improving science, technology, engineering, and mathematics (STEM) education in the U.S. school system has disregarded differences within STEM fields. Indeed, the most important STEM field for a modern economy is not only one that is not represented by its own initial in "STEM" but also the field with the fewest number of high school students taking its classes and by far has the most room for improvement—computer science

    Defining the Competencies, Programming Languages, and Assessments for an Introductory Computer Science Course

    Get PDF
    The purpose of this study was to define the competencies, programming languages, and assessments for an introductory computer science course at a small private liberal arts university. Three research questions were addressed that involved identifying the competencies, programming languages, and assessments that academic and industry experts in California’s Central Valley felt most important and appropriate for an introduction to computer science course. The Delphi methodology was used to collect data from the two groups of experts with various backgrounds related to computing. The goal was to find consensus among the individual groups to best define aspects that would best comprise an introductory CS0 course for majors and non-majors. The output would be valuable information to be considered by curriculum designers who are developing a new program in software engineering at the institution. The process outlined would also be useful to curriculum designers in other fields and geographic regions who attempt to address their local education needs. Four rounds of surveys were conducted. The groups of experts were combined in the first round to rate the items in the straw models determined from the literature and add additional components when necessary. The academic and industry groupings were separated for the remainder of the study so that a curriculum designer could determine not only the items deemed most important, but also their relative importance among the two distinct groups. The experts selected items in each of the three categories in the second round to reduce the possibilities for subsequent rounds. The groups were then asked to rank the items in each of the three categories for the third round. A fourth round was held as consensus was not reached by either of the groups for any of the categories as determined by Kendall’s W. The academic experts reached consensus on a list of ranked competencies in the final round and showed a high degree of agreement on lists of ranked programming languages and assessments. Kendall’s W, values, however, were just short of the required 0.7 threshold for consensus on these final two items. The industry experts did not reach consensus and showed low agreement on their recommendations for competencies, programming languages, and assessments
    corecore