1,078 research outputs found

    Compliant morphing structures from twisted bulk metallic glass ribbons

    Get PDF
    In this work, we investigate the use of pre-twisted metallic ribbons as building blocks for shape-changing structures. We manufacture these elements by twisting initially flat ribbons about their (lengthwise) centroidal axis into a helicoidal geometry, then thermoforming them to make this configuration a stress-free reference state. The helicoidal shape allows the ribbon to have preferred bending directions that vary throughout its length. These bending directions serve as compliant joints and enable several deployed and stowed configurations that are unachievable without pre-twist, provided that compaction does not induce material failure. We fabricate these ribbons using a bulk metallic glass (BMG), for its exceptional elasticity and thermoforming attributes. Combining numerical simulations, an analytical model based on shell theory and torsional experiments, we analyze the finite-twisting mechanics of various ribbon geometries. We find that, in ribbons with undulated edges, the twisting deformations can be better localized onto desired regions prior to thermoforming. Finally, we join together multiple ribbons to create deployable systems. Our work proposes a framework for creating fully metallic, yet compliant structures that may find application as elements for space structures and compliant robots

    A review on optimization in polymer processing

    Get PDF
    The use of optimization computational tools is of primordial importance for the polymer processing industry, as they provide the means for improving the efficiency of the process without requiring time-consuming and expensive procedures. This review aims to evaluate the application of optimization methodologies to the most important polymer processing technics, including, single and twin-screw extrusion, dies and calibrators, blow-moulding, injection moulding and thermoforming. The most important features of an optimization system will be identified to identify the best practices for each particular situation. These features include the nature of the objective function (single or multi-objective), the type of optimization algorithm, the modelling routine used to evaluate the solutions and the parameters to be optimized. First, the state-of-the-art optimization methodologies generally employed is presented. This will be followed by a detailed review of the literature dealing with this subject. This will be completed by a discussion taking into account the features referred to above. Therefore, it was possible to show that different optimization techniques can be applied to polymer processing with great success

    A finite strain thermo-mechanically coupled material model for semi-crystalline polymers

    Get PDF
    In this work, a thermo-mechanically coupled constitutive model for semicrystalline polymers is derived in a thermodynamically consistent manner. In general, the macroscopic material behaviour of this class of materials is dictated by the underlying microstructure, i.e. by the distribution and structure of crystalline regimes, which form up after cooling from the amorphous melt. In order to account for the latter, the total degree of crystallinity is incorporated as an internal variable and its evolution is prescribed by means of a non-isothermal crystallisation kinetics model. The numerically efficient and robust framework is characterised based on experimental data for Polyamide 6 and shows a promising potential to predict the hyperelastic, visco-plastic material behaviour at various temperature

    A finite strain thermo-mechanically coupled material model for semi-crystalline polymers

    Get PDF
    In this work, a thermo-mechanically coupled constitutive model for semicrystalline polymers is derived in a thermodynamically consistent manner. In general, the macroscopic material behaviour of this class of materials is dictated by the underlying microstructure, i.e. by the distribution and structure of crystalline regimes, which form up after cooling from the amorphous melt. In order to account for the latter, the total degree of crystallinity is incorporated as an internal variable and its evolution is prescribed by means of a non-isothermal crystallisation kinetics model. The numerically efficient and robust framework is characterised based on experimental data for Polyamide 6 and shows a promising potential to predict the hyperelastic, visco-plastic material behaviour at various temperature

    Multi-objective optimization of plastics thermoforming

    Get PDF
    The practical application of a multi-objective optimization strategy based on evolutionary algorithms was proposed to optimize the plastics thermoforming process. For that purpose, in this work, differently from the other works proposed in the literature, the shaping step was considered individually with the aim of optimizing the thickness distribution of the final part originated from sheets characterized by different thickness profiles, such as constant thickness, spline thickness variation in one direction and concentric thickness variation in two directions, while maintaining the temperature constant. As far we know, this is the first work where such a type of approach is proposed. A multi-objective optimization strategy based on Evolutionary Algorithms was applied to the determination of the final part thickness distribution with the aim of demonstrating the validity of the methodology proposed. The results obtained considering three different theoretical initial sheet shapes indicate clearly that the methodology proposed is valid, as it provides solutions with physical meaning and with great potential to be applied in real practice. The different thickness profiles obtained for the optimal Pareto solutions show, in all cases, that that the different profiles along the front are related to the objectives considered. Also, there is a clear improvement in the successive generations of the evolutionary algorithm.This research was funded by NAWA-Narodowa Agencja Wymiany Akademickiej, under grant PPN/ULM/2020/1/00125 and European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No 734205–H2020-MSCA-RISE2016. The authors also acknowledge the funding by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT (Portuguese Foundation for Science and Technology) under the projects UID-B/05256/2020, UID-P/05256/2020, UIDB/00319/2020, MORPHING.TECH— Direct digital Manufacturing of automatic programmable and Continuously adaptable patterned surfaces with a discrete and patronized composition (POCI-01-0247-FEDER-033408)

    Thermoforming process effects on structural performance of carbon fiber reinforced thermoplastic composite parts through a manufacturing to response pathway

    Get PDF
    Thermoforming process of thermoplastic-based continuous CFRP\u27s offer a major advantage in reducing cycle times for large-scale productions, but it can also have a significant impact on the structural performance of the parts by inducing undesirable effects. This necessitates the development of an optimal manufacturing process that minimizes the introduction of undesirable factors in the structure and thereby achieves the targeted mechanical performance. This can be done by first establishing a relationship between the manufacturing process and mechanical performance and successively optimizing it to achieve the desired targets. The current study focuses on the former part, where a manufacturing-to-response (MTR) pathway is established for a continuous fiber-reinforced thermoplastic composite hat structure. The MTR pathway incorporates the thermoforming process-induced effects while determining the mechanical performance and principally comprises of material characterization, finite element simulations, and experimental validation. The composite material system selected for this study is AS4/Nylon-6 (PA6) with a woven layup. At first, the thermoforming simulations are performed above the melt temperature of PA6 using an anisotropic hyperelastic material model, and the process-induced effects such as thickness variation, fiber orientations, and residual stresses are captured from the analysis. Residual stresses developed in the formed structure during quench cooling from the elevated temperature are predicted by the implementation of classical laminate theory (CLT). These results are then mapped onto a duplicate part meshed suitably for mechanical performance analysis. A quasi-static 3-point bend test and a dynamic impact test are carried out and the results are compared with experimental tests. Experimental results from thermoforming, bending and dynamic impact trials show good agreement with the simulation results for the hat structure under consideration. Further, the static and dynamic performance is evaluated for the thermoformed structure and the effects of the thermoforming process are compared numerically, for the cases with and without the inclusion of process effects
    • …
    corecore