22 research outputs found

    Receptor–drug association studies in the inhibition of the hematin aggregation process of malaria

    Get PDF
    AbstractDocking studies were performed to investigate the binding of several antimalarial compounds to the putative drug receptors involved in the hematin aggregation process. These studies reveal a binding profile that correlates with the complementarity of electrostatic potentials between the receptors and the active molecules. These results allow a possible explanation for the same molecular mechanism shown by 4-aminoquinolines, quinine, mefloquine, halofantrine and hydroxylated xanthones. The docking data presented in this work offer an interesting approach to the design of new molecules with potential antimalarial activity

    Novel mitochondrial electron transport-chain inhibitors as potencial antimalarial agents

    Get PDF
    Tese de doutoramento, Farmácia (Química Farmacêutica e Terapêutica), Universidade de Lisboa, Faculdade de Farmácia, 2010The bc1 complex is an attractive a validated drug target in the fight against malaria. The mitochondrial electron transport-chain, in which this complex is involved, is fundamental in Plasmodium sp.. The parasites do not possess the requested enzymatic machinery to salvage pyrimidines from their metabolism and, therefore, have to perform de novo pyrimidine biosynthesis to enable their survival. Blockage of this pathway leads to their death. The present work focused on the development of novel inhibitors with structural similarity to known bc1 complex antagonists. Also, this work aimed at delivering novel leads for drug development. 4-Pyridonimines with extended lipophilic side chains showed potential as isosteric replacements for 4(1H)-pyridones. The structure of those compounds was derived from structure-based design and they were active in vitro against P. falciparum. The most active compound presented an IC50 of ca. 1 μM, and the mode of action was hypothesized through docking studies. A series of 4-quinolonimines was also prepared. Those presented enhanced antiplasmodial activity in comparison to the previous set of compounds, with IC50s ranging from 0.5 to 1 μM. These also showed outstanding activity against the liver stage of P. berghei. Despite the mechanism of action not being clear at the moment, the compounds demonstrated to bind to hematin. However, the docking studies in the Qo site of the bc1 complex also showed a good fit of the compounds. Flavones were also synthesized with the aim of optimizing the antiplasmodial activity of stigmatellin. All compounds showed modest activity against both blood and liver stages, with the most active compound presenting an IC50 of 6 μM against P. falciparum W2 strain. Finally, the virtual screening study that was performed allowed the discovery of novel scaffolds with antiplasmodial activity. A combination of ligand- and receptor-based approaches was successful in retrieving 7 active compounds out of the 23 that were purchased. One of them presented an IC50 of 2 μM in vitro.O complexo bc1 é um alvo terapêutico atractivo e validado na luta contra a malária. A cadeia transportadora de electrões, em que este complexo está envolvido, é fundamental em parasitas do género Plasmodium sp.. Os parasitas não possuem as enzimas necessárias para reciclar as pirimidinas vindas do metabolismo e, por isso, necessitam de sintetizá-las de novo, de forma a permitir a sobrevivência do parasita. O bloqueio desta via metabólica conduz à morte sua morte. O presente trabalho incidiu no desenvolvimento de novos inibidores com semelhança estrutural a antagonistas conhecidos do complexo bc1. De igual forma, este trabalho focou-se na descoberta de novos protótipos para o desenvolvimento de novos antimaláricos. As 4-piridoniminas com cadeias lipofílicas longas mostraram potencial como isósteros das 4(1H)-piridonas. A estrutura dos primeiros foi derivada de estudos de docking molecular e apresentaram actividade in vitro contra P. falciparum. O composto mais activo possui um IC50 de aproximadamente 1 μM e o seu modo de acção foi posto em hipótese por docking molecular. Uma série de 4-quinolomininas foi também preparada. Estas mostraram ser mais activas que a série de compostos anteriores, com IC50 entre 0,5 e 1 μM, tendo mostrado também excelente actividade contra a fase hepática de P. berghei. Apesar do mecanismo de acção não ser claro neste momento, os compostos mostraram ligar-se à hematina. Contudo, os estudos de docking molecular no sítio Qo do complexo bc1 podem, igualmente, justificar as actividades obtidas. Foi sintetizada uma série de flavonas com o intuito de optimizar a actividade antiplasmódica da estigmatelina. Todos os compostos obtidos mostraram actividade modesta contra as fases sanguínea e hepática, com o composto mais activo a apresentar um IC50 de 6 μM contra a estirpe W2 de P. falciparum. Finalmente, o estudo de screening virtual que foi efectuado permitiu a descoberta de novos núcleos com actividade antiplasmódica. A combinação de um método aplicando, de forma faseada, a informação de ligandos e do receptor resultou na obtenção de 7 compostos activos, de um total de 23 comprados. Um dos compostos apresentou um IC50 de 2 μM in vitro.Fundação para a Ciência e a Tecnologia: bolsa de doutoramento SFRH/BD/30689/2006; projecto PTDC/SAU-FCT/098734/2008Fundação para a Ciência e Tecnologia (FCT), SFRH/BD/30689/2006; projecto PTDC/SAU-FCT/098734/200

    Marine anti-malarial isonitriles : a synthetic and computational study

    Get PDF
    The development of Plasmodium falciparum malarial resistance to the current armoury of anti-malarial drugs requires the development of new treatments to help combat this disease. The marine environment is a well established source of potential pharmaceuticals. Of interest to us are isonitrile, isocyanate and isothiocyanate compounds isolated from marine sponges and molluscs which have exhibited nano-molar anti-plasmodial activities. Through quantitative structure-activity relation studies (QSAR), a literature precedent exists for a pseudoreceptor model from which a pharmacophore for the design of novel anti-malarial agents was proposed. The current theory suggests that these marine compounds exert their inhibitory action through interfering with the heme detoxification pathway in P. falciparum. We propose that the computational methods used to draw detailed conclusions about the mode of action of these marine compounds were inadequate. This thesis addresses this problem using contemporary computational methodologies and seeks to propose a more robust method for the rational design of new anti-malarial drug compounds that inhibit heme polymerization to hemozoin. In order to investigate the interactions of the marine compounds with their heme targets, a series of modern computational procedures were formulated, validated and then applied to theoretical systems. The validations of these algorithms, before their application to the marine compound-heme systems, were achieved through two case studies. The first was used to investigate the applicability of the statistical docking algorithm AutoDock to be used for the exploration of conformational space around the heme target. A theoretical P. falciparum 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PfDXR) enzyme model, constructed by the Biochemistry Department at Rhodes University, provided the ideal model to validate the AutoDock program. The protein model was accordingly subjected to rigorous docking simulations with over 30 different ligand molecules using the AutoDock algorithm which allowed for the docking algorithm’s limitations to be ascertained and improved upon. This investigation facilitated the successful validation of the protein model, which can now be used for the rational design of new PfDXR-inhibiting anti-plasmodial compounds, as well as enabling us to propose an improvement of the docking algorithm for application to the heme systems. The second case study was used to investigate the applicability of an ab initio molecular dynamics algorithm for simulation of bond breaking/forming events between the marine compounds and their heme target. This validation involved the exploration of intermolecular interactions in a naturally occurring nonoligomeric zipper using the Car-Parrinello Molecular Dynamics (CPMD) method. This study allowed us to propose a model for the intermolecular forces responsible for zipper self-assembly and showcased the CPMD method’s abilities to simulate and predict bond forming/breaking events. Data from the computational analyses suggested that the interactions between marine isonitriles, isocyanates and isothiocyanates occur through bond-less electrostatic attractions rather than through formal intermolecular bonds as had been previously suggested. Accordingly, a simple bicyclic tertiary isonitrile (5.14) was synthesized using Kitano et al’s relatively underutilized isonitrile synthetic method for the conversion of tertiary alcohols to their corresponding isonitriles. This compound’s potential for heme detoxification inhibition was then explored in vitro via the pyridine-hemochrome assay. The assay data suggested that the synthesized isonitrile was capable of inhibiting heme polymerization in a similar fashion to the known inhibitor chloroquine. Attempts to synthesize tricyclic analogues of 5.14 were unsuccessful and highlighted the limitation of Kitano et al’s isonitrile synthetic methodology

    Chimica Farmaceutica

    Get PDF

    Novel C11 amino derivatives of cryptolepine : synthesis and in vitro studies with DNA and haeme

    Get PDF
    Tese de doutoramento, Farmácia (Química Farmacêutica e Terapêutica), Universidade de Lisboa, Faculdade de Farmácia, 2010Malaria is one of the most widespread infectious diseases of our time. The global malaria map has been shrinking over the past 60 years, but today more people are at risk of suffering from malaria than any other time in history. In the past few years malaria has once again attracted more attention, partly because it is recognized that malaria spread in sub-Saharan Africa has increased in the recent years, mainly due to the development of drug resistances. Cryptolepine (1), is an indoloquinoline alkaloid, extracted from the West African climbing shrub Cryptolepis sanguinolenta (Lindl.) Schltr, a traditional herb used in folk medicine for the treatment of malaria. Several authors hypothesized that the mechanism of action of cryptolepine could be by inhibition of haemozoin formation in the digestive vacuole (DV) of the parasite, however in a microscopic fluorescence study, the indoloquinoline chromophore, was suggested to accumulate into specific parasite structures that could correspond to the parasite nuclei, and thus justifying its activity due to cytotoxic effects on DNA and topoisomerase II activity. Cryptolepine derivatives (3) have been synthesized through the incorporation of basic side-chains in the C-11 position of the 10H-indolo[3,2-b]quinoline scaffold and evaluated for their antiplasmodial and cytotoxicity properties. The derivative containing a conformationally restricted piperidine sidechain (3n) presented IC50 values of 23-44 nM against chloroquine resistant strains and a selectivity index value of ca 1400, i.e. a 1000-fold improvement in selectivity when compared with 1. The introduced side chains are weakly basic, with pKa values in the terminal amine functionality ranging from 5.2 to 12.5, and are predicted to promote accumulation inside the DV to an extent similar to that of chloroquine. All compounds within this series showed the ability to interact with monomeric haematin (FPIX-OH), with a stoichiometry of 1:1 (3:FPIX-OH) and with association constants (Kass) values between 0.062 and 0.41 x106 M-1, comparable to chloroquine (Kass = 0.085 x106 M-1). The complex stabilization is assured by π-π stacking interactions modulated by the aromatic core, and H-bond between the terminal amine side chain and haematin carboxylate anions, thus capable to inhibit haemozoin formation in DV. However, localization studies of compound 3n inside parasite blood stages suggest an additional mechanism of action, like interactions with DNA, besides inhibition of haemozoin crystal growth. Cryptolepine derivatives (3) bind strongly to double-stranded d(GATCCTAGGATC)2 oligonucleotide with association constants ranging from 105 M-1 to 107 M-1. Furthermore, molecular docking simulations showed that, in contrast with 1, compounds 3 are predicted to not intercalate into DNA double helix, binding essentially to single- and double-stranded DNA, with a stoichiometry of 2:1 (3:DNA), through electrostatic and H-bonding interaction involving charged nitrogens. In order to explore the indolo[3,2-b]quinolin-11-one (quindolone) scaffold (4), and get new antimalarial chemotypes, we decided to synthesize a series of quindolones derivatives (5), targeting malaria parasite digestive vacuole and haeme detoxification pathway, through the introduction of N,N diethylethanamine in the indolo[3,2-b]quinoline aromatic nucleus (N5,N10-alkylation). This reaction gave N,O- (94), N,N- (5) and O-(95) alkylated products containing two or one basic side-chains, which were evaluated for antiplasmodial activity against chloroquine-resistant P. falciparum W2 strain and cytotoxicity for HepG2 A16 hepatic cells. By incorporating alkylamine side chains and chlorine atoms in the quindolone nucleus we transformed the inactive tetracyclic parent quindolones (4, 91a and 91b) into moderate or highly active and selective compounds to the resistant P. falciparum W2 strain, with IC50 ranging from 51 to 2638 nM and with selectivity ratios up to 98. All the quindolone derivatives in the series showed the ability to complex FPIX-OH (1:1 stoichiometry) with associations constants (Kass) ranging from 0,074 to 0,14 x106 M-1, being the main intermolecular interactions due to π-π stacking interactions and H-bond between derivatives and haematin. Cryptolepine and the new antimalarial chemotype, quindolone, are suitable scaffolds for the design of active and selective compounds targeting parasite haemozoin detoxification pathway, with potential for development as antimalarial agents.A malária ou paludismo é uma doença infecciosa provocada por parasitas do género Plasmodium e transmitida pela picada do mosquito fêmea do género Anopheles. A malária é uma das infecções mais difundida por todo o mundo. Apesar propagação ter diminuído nos últimos 50 anos, nos dias de hoje há mais pessoas em risco de contaminação com malária do que em qualquer outra época da história. Em 2008, a malária era endémica em 108 países, contando com cerca de 247 milhões de casos reportados, 3,3 mil milhões de pessoas em risco. Anualmente, entre 1 a 3 milhões de casos culminam em morte, dos quais, muitos são crianças com idade inferior a 5 anos. A malária é a principal causa de morte infantil em África, sendo que 60 % dos novos casos registados todos os anos ocorrem na África sub-Sahariana, onde ocorrem 90 % dos casos fatais de malária. Para além de ser um grave problema de saúde pública, a malária é também um problema sócio-económico, não só devido ao elevado investimento efectuado na prevenção e tratamento, mas também devido a custos indirectos resultantes da perda de productividade que advêm da elevada morbilidade e mortalidade. No entanto, recentemente a malária voltou a chamar a atenção da comunidade, muito porque foi reconhecido que o número de casos reportados em África tem aumentado nos últimos anos devido ao aumento de fenómenos de resistência nos parasitas aos fármacos utilizados para tratamento da infecção. Apesar da enorme variedade de compostos com actividade antimalárica, a sua eficácia contínua no entanto a ser reduzida devido aos fenómenos de resistência associados. A cloroquina (2) é uma 4- amionoquinolina sintetizada em 1934 e tem sido um dos pilares do tratamento da malária nos últimos 60 anos, sendo de consenso geral, que a sua actividade antimalárica se deva à inibição da formação do cristal de hemozoína no vacúolo digestivo do parasita. No organismo humano, o parasita ingere hemoglobina e digere-a, libertando os amino ácidos necessários para o seu desenvolvimento, e o heme, tóxico para o parasita. Este heme é então biocristalizado pelo parasita a hemozoina, um cristal inerte e não tóxico. A cloroquina, devido às suas propriedades básicas, apresenta a capacidade de se acumular no interior do vacúolo digestivo acídico e formar complexos estáveis cloroquina:heme, através de interacções π-π entre os anéis aromáticos, impedindo assim a formação da hemozoina e originando a morte do parasita. Vários autores referem ainda que a cloroquina apresenta também a capacidade de complexar com as faces em crescimento do cristal de hemozoina, inibindo assim o processo de cristalização. Nos últimos 30 anos, extractos de uma enorme variedade de espécies de plantas, incluindo muitas utilizadas na medicinal tradicional, têm sido avaliadas in vitro quanto à sua actividade antimalárica. O alcalóide criptolepina (1), constituinte maioritário da raíz da Cryptolepis sanguinolenta, um arbusto trepador africano normalmente utilizado na medicina tradicional para tratamento da malária, demonstrou possuir propriedades antiplasmodicas equivalentes à cloroquina. A criptolepina parece exercer as propriedades antiplasmodicas devido à capacidade de inibir a formação da hemozoina, tal como a cloroquina, ligando-se ao heme e bloqueando assim o mecanismo de destoxificação do parasita. No entanto, a criptolepina é também um agente intercalante de cadeias de ADN ricas em guanina (G) e citosina (C), e tendo preferência por sequências CC não alternadas. Assim, a criptolepina apresenta propriedades citotóxicas devido à inibição da topoisomerase II e da síntese do ADN. Estas propriedades citotóxicas podem também estar na origem da actividade antiplasmódica uma vez que, um estudo de localização intracelular em eritrócitos infectados com P. falciparum, revelou que o alcalóide se acumula em estruturas no interior do parasita que poderão corresponder ao núcleo. Neste trabalho foram sintetizados 25 análogos da criptolepina (3) com cadeias laterais diaminoalquílicas, na posição C11 do núcleo aromático da indolo[3,2-b]quinolina e avaliados quanto as suas propriedades antiplasmodicas e citotóxicas em linhas celulares de mamífero. O análogo com uma cadeia lateral de piperidina (3n), apresentou uma actividade antiplasmódica (IC50) variando entre 23 e 44 nM, contra diferentes estripes resistentes à cloroquina, e um índice de selectividade de aproximadamente 1400, representando um aumento de cerca de 1000 vezes quando comparado com 1. Os nossos estudos sugerem que a introdução de cadeias laterais com aminas terminais basicas, apresentando valores de pKa variando entre 5,2 e 12,5, promove a acumulação dos compostos no interior do vacúolo digestivo do parasita, em níveis de concentração semelhantes aos da cloroquina. Todos os análogos da criptolepina sintetizados apresentam a capacidade de formar complexos com o monómero da hematina (FPIX-OH), com constantes de associação (Kass) variando entre 0,062 e 0,41 x106 M-1, semelhante à constante de associação determinada para a cloroquina (Kass = 0,085 x106 M-1). Os complexos são estabilizados maioritariamente através de interacções π-π entre o núcleo aromático da indolo[3,2-b]quinolina e o núcleo porfirínico da hematina. Estudos de modelação molecular revelaram também que os azotos protonados nas aminas terminais das cadeias laterais podem formar pontes de hidrogénio com os iões carboxilato da hematina. Estes resultados demonstraram que os novos análogos da criptolepina apresentam a capacidade de complexar com a FPIX-OH e inibir a formação da hemozoina. No entanto, o estudo de localização intracelular realizado por microscopia de fluorescência em eritrócitos infectados com P. falciparum, demonstrou que os análogos da criptolepina também apresentam a capacidade de se acumularem no núcleo do parasita e assim, potenciar a actividade antiplasmódica. De modo a avaliar a capacidade de 3 para interagir com estruturas de ADN, foram realizados estudos de interacção com um oligonucleótido de cadeia única d(5’-GCCAAACACAGAATCG-3’) e de cadeia dupla d(GATCCTAGGATC)2. Os compostos 3 apresentaram forte capacidade de complexação com ambas as estruturas de DNA e valores de constante de associação (Kass) variando entre 105 M-1 e 107 M-1. Estudos de modelação molecular com estruturas de ADN de hélice duplas semelhante à utilizada no ensaios in vitro, demonstraram que os compostos não são agentes intercalantes, tal como verificado para a criptolepina, mas ligam-se à fenda menor/maior, com uma estequiometria 2:1 (análogo da criptolepina:ADN) e interagem preferencialmente com a cadeia de fosfatos através de interacções electrostáticas e pontes de hidrogénio. Estes resultados demonstraram que a actividade antiplasmódica dos novos análogos da criptolepina parece ser justificada por efeitos sinérgicos ou aditivos à inibição da formação da hemozoina e citotoxicidade associada à interacção com estruturas de ADN. Com o objectivo de aumentar a diversidade de esqueletos químicos com actividade antimalárica, foram sintetizados novos análogos da indolo[3,2-b]quinolin-11-ona (11-quindolona), tendo como propósito aumentar a retenção destes compostos no interior do vacúolo digestivo do parasita. Para tal, foram introduzidas duas cadeias amino-alquílicas (N,N-dietiletanoamina) no núcleo aromático da quindolona (alquilação em N5 e N10). A reacção originou no entanto padrões de alquilação adicionais, N,O- (94) e O- (95), que foram também avaliados quanto ao seu potencial antiplasmódico e citotoxicidade em células hepáticas HepG2 A16. Com introdução de uma ou duas cadeias aminoalquílicas e átomos de cloro no núcleo aromático, as quindolonas (4, 91a e 91b), inicialmente inactivas, deram origem a compostos com actividade moderada a forte contra a estirpe W2 do P. falciparum resistente à cloroquina, apresentando valores de IC50 entre 51 e 2638 nM, e com maior selectividade para o parasita. Todos os análogos da quindolona sintetizados apresentam também a capacidade de formar complexos com a hematina, com uma estequiometria 1:1 (análogo:FPIX-OH) e constantes de associação (Kass) que variam entre 0,074 e 0,14 x106 M-1. A estabilidade do complexo é assegurada pela formação de interacções π-π entre o núcleo aromático e o anel de porfírina da hematina e estudos de modelação molecular confirmaram a possibilidade de formação de pontes de hidrogénio entre a amina terminal da cadeia lateral e os aniões carboxilato do dimero da hematina. Estes resultados demonstraram que a introdução de cadeias amino-alquílicas no núcleo da quindolona origina compostos com boa actividade antiplasmódica, com aparente capacidade de inibição da formação da hemozoína e possivelmente com maior capacidade de acumulação no vacúolo digestivo do parasita. As indolo[3,2-b]quinolinas demonstraram assim serem bons esqueletos para o desenho e desenvolvimento de compostos para tratamento da malária, obtendo-se compostos mais activos e selectivos para o parasita.Fundação para a Ciência e Tecnologia (SFRH/BD/29202/2006); Faculdade de Farmácia, Universidade de Lisboa, Portugal; Scholl of Pharmacy and Pharmaceutical Sciences, University of Manchester, UK(material and equipment necessary to the development of the study)

    The Role of Histidine-Rich Proteins in the Biomineralization of Hemozoin

    Get PDF
    Hemozoin formation, the consequential end product of the proteolysis of hemoglobin by Plasmodium falciparum, is essentially a biomineralization process whereby toxic free heme is aggregated into an inert crystalline solid, also known as malaria pigment or ß-hematin. The histidine-rich protein II (HPR II), isolated from the digestive vacuole of the parasite, has been implicated in the mediation of this biomineral through the protein\u27s ability to bind heme, aggregate the biomineral, and be effectively inhibited by known antimalarials, including chloroquine. The HRP II sequence, which is comprised of 76% of histidine and alanine residues, has a specific amino acid repeat motif which is reminiscent of nucleating scaffold proteins utilized by other biological systems in biomineralization processes. Using a peptide dendrimer previously developed in our laboratory as a functional HRP II mimic, we examined two domain repeats, Ala-His-His-Ala-His-His-Ala-Ala-Asp and Ala-His-His-Ala-Ala-Asp-Ala-His-His, as putative hemozoin nucleating sequences. Results indicated the Ala-His-His-Ala-His-His-Ala-Ala-Asp repeat of peptide dendrimer BNT II was the most probable nucleating domain within the HRP II sequence. Site-directed mutagenesis studies were then utilized to elucidate the role of the nucleating domain per active site amino acids
    corecore