1,392 research outputs found

    Computational speedups using small quantum devices

    Full text link
    Suppose we have a small quantum computer with only M qubits. Can such a device genuinely speed up certain algorithms, even when the problem size is much larger than M? Here we answer this question to the affirmative. We present a hybrid quantum-classical algorithm to solve 3SAT problems involving n>>M variables that significantly speeds up its fully classical counterpart. This question may be relevant in view of the current quest to build small quantum computers.Comment: 5+12 page

    Network Community Detection On Small Quantum Computers

    Full text link
    In recent years a number of quantum computing devices with small numbers of qubits became available. We present a hybrid quantum local search (QLS) approach that combines a classical machine and a small quantum device to solve problems of practical size. The proposed approach is applied to the network community detection problem. QLS is hardware-agnostic and easily extendable to new quantum computing devices as they become available. We demonstrate it to solve the 2-community detection problem on graphs of size up to 410 vertices using the 16-qubit IBM quantum computer and D-Wave 2000Q, and compare their performance with the optimal solutions. Our results demonstrate that QLS perform similarly in terms of quality of the solution and the number of iterations to convergence on both types of quantum computers and it is capable of achieving results comparable to state-of-the-art solvers in terms of quality of the solution including reaching the optimal solutions

    Quantum machine learning: a classical perspective

    Get PDF
    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning techniques to impressive results in regression, classification, data-generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets are motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed-up classical machine learning algorithms. Here we review the literature in quantum machine learning and discuss perspectives for a mixed readership of classical machine learning and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in machine learning are identified as promising directions for the field. Practical questions, like how to upload classical data into quantum form, will also be addressed.Comment: v3 33 pages; typos corrected and references adde

    Quantum Discord and Quantum Computing - An Appraisal

    Full text link
    We discuss models of computing that are beyond classical. The primary motivation is to unearth the cause of nonclassical advantages in computation. Completeness results from computational complexity theory lead to the identification of very disparate problems, and offer a kaleidoscopic view into the realm of quantum enhancements in computation. Emphasis is placed on the `power of one qubit' model, and the boundary between quantum and classical correlations as delineated by quantum discord. A recent result by Eastin on the role of this boundary in the efficient classical simulation of quantum computation is discussed. Perceived drawbacks in the interpretation of quantum discord as a relevant certificate of quantum enhancements are addressed.Comment: To be published in the Special Issue of the International Journal of Quantum Information on "Quantum Correlations: entanglement and beyond." 11 pages, 4 figure

    Quantum Computing in the NISQ era and beyond

    Get PDF
    Noisy Intermediate-Scale Quantum (NISQ) technology will be available in the near future. Quantum computers with 50-100 qubits may be able to perform tasks which surpass the capabilities of today's classical digital computers, but noise in quantum gates will limit the size of quantum circuits that can be executed reliably. NISQ devices will be useful tools for exploring many-body quantum physics, and may have other useful applications, but the 100-qubit quantum computer will not change the world right away --- we should regard it as a significant step toward the more powerful quantum technologies of the future. Quantum technologists should continue to strive for more accurate quantum gates and, eventually, fully fault-tolerant quantum computing.Comment: 20 pages. Based on a Keynote Address at Quantum Computing for Business, 5 December 2017. (v3) Formatted for publication in Quantum, minor revision
    corecore