1,847 research outputs found

    Operational Semantics of Resolution and Productivity in Horn Clause Logic

    Get PDF
    This paper presents a study of operational and type-theoretic properties of different resolution strategies in Horn clause logic. We distinguish four different kinds of resolution: resolution by unification (SLD-resolution), resolution by term-matching, the recently introduced structural resolution, and partial (or lazy) resolution. We express them all uniformly as abstract reduction systems, which allows us to undertake a thorough comparative analysis of their properties. To match this small-step semantics, we propose to take Howard's System H as a type-theoretic semantic counterpart. Using System H, we interpret Horn formulas as types, and a derivation for a given formula as the proof term inhabiting the type given by the formula. We prove soundness of these abstract reduction systems relative to System H, and we show completeness of SLD-resolution and structural resolution relative to System H. We identify conditions under which structural resolution is operationally equivalent to SLD-resolution. We show correspondence between term-matching resolution for Horn clause programs without existential variables and term rewriting.Comment: Journal Formal Aspect of Computing, 201

    Productive Corecursion in Logic Programming

    Get PDF
    Logic Programming is a Turing complete language. As a consequence, designing algorithms that decide termination and non-termination of programs or decide inductive/coinductive soundness of formulae is a challenging task. For example, the existing state-of-the-art algorithms can only semi-decide coinductive soundness of queries in logic programming for regular formulae. Another, less famous, but equally fundamental and important undecidable property is productivity. If a derivation is infinite and coinductively sound, we may ask whether the computed answer it determines actually computes an infinite formula. If it does, the infinite computation is productive. This intuition was first expressed under the name of computations at infinity in the 80s. In modern days of the Internet and stream processing, its importance lies in connection to infinite data structure processing. Recently, an algorithm was presented that semi-decides a weaker property -- of productivity of logic programs. A logic program is productive if it can give rise to productive derivations. In this paper we strengthen these recent results. We propose a method that semi-decides productivity of individual derivations for regular formulae. Thus we at last give an algorithmic counterpart to the notion of productivity of derivations in logic programming. This is the first algorithmic solution to the problem since it was raised more than 30 years ago. We also present an implementation of this algorithm.Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017 16 pages, LaTeX, no figure

    Towards a Uniform Theory of Effectful State Machines

    Full text link
    Using recent developments in coalgebraic and monad-based semantics, we present a uniform study of various notions of machines, e.g. finite state machines, multi-stack machines, Turing machines, valence automata, and weighted automata. They are instances of Jacobs' notion of a T-automaton, where T is a monad. We show that the generic language semantics for T-automata correctly instantiates the usual language semantics for a number of known classes of machines/languages, including regular, context-free, recursively-enumerable and various subclasses of context free languages (e.g. deterministic and real-time ones). Moreover, our approach provides new generic techniques for studying the expressivity power of various machine-based models.Comment: final version accepted by TOC

    Estimating the effect of joint interventions from observational data in sparse high-dimensional settings

    Full text link
    We consider the estimation of joint causal effects from observational data. In particular, we propose new methods to estimate the effect of multiple simultaneous interventions (e.g., multiple gene knockouts), under the assumption that the observational data come from an unknown linear structural equation model with independent errors. We derive asymptotic variances of our estimators when the underlying causal structure is partly known, as well as high-dimensional consistency when the causal structure is fully unknown and the joint distribution is multivariate Gaussian. We also propose a generalization of our methodology to the class of nonparanormal distributions. We evaluate the estimators in simulation studies and also illustrate them on data from the DREAM4 challenge.Comment: 30 pages, 3 figures, 45 pages supplemen

    About models of security protocols

    Get PDF
    In this paper, mostly consisting of definitions, we revisit the models of security protocols: we show that the symbolic and the computational models (as well as others) are instances of a same generic model. Our definitions are also parametrized by the security primitives, the notion of attacker and, to some extent, the process calculus

    A probabilistic polynomial-time process calculus for the analysis of cryptographic protocols

    Get PDF
    AbstractWe prove properties of a process calculus that is designed for analysing security protocols. Our long-term goal is to develop a form of protocol analysis, consistent with standard cryptographic assumptions, that provides a language for expressing probabilistic polynomial-time protocol steps, a specification method based on a compositional form of equivalence, and a logical basis for reasoning about equivalence.The process calculus is a variant of CCS, with bounded replication and probabilistic polynomial-time expressions allowed in messages and boolean tests. To avoid inconsistency between security and nondeterminism, messages are scheduled probabilistically instead of nondeterministically. We prove that evaluation of any process expression halts in probabilistic polynomial time and define a form of asymptotic protocol equivalence that allows security properties to be expressed using observational equivalence, a standard relation from programming language theory that involves quantifying over all possible environments that might interact with the protocol.We develop a form of probabilistic bisimulation and use it to establish the soundness of an equational proof system based on observational equivalences. The proof system is illustrated by a formation derivation of the assertion, well-known in cryptography, that El Gamal encryption's semantic security is equivalent to the (computational) Decision Diffie–Hellman assumption. This example demonstrates the power of probabilistic bisimulation and equational reasoning for protocol security

    Computational Soundness for Dalvik Bytecode

    Full text link
    Automatically analyzing information flow within Android applications that rely on cryptographic operations with their computational security guarantees imposes formidable challenges that existing approaches for understanding an app's behavior struggle to meet. These approaches do not distinguish cryptographic and non-cryptographic operations, and hence do not account for cryptographic protections: f(m) is considered sensitive for a sensitive message m irrespective of potential secrecy properties offered by a cryptographic operation f. These approaches consequently provide a safe approximation of the app's behavior, but they mistakenly classify a large fraction of apps as potentially insecure and consequently yield overly pessimistic results. In this paper, we show how cryptographic operations can be faithfully included into existing approaches for automated app analysis. To this end, we first show how cryptographic operations can be expressed as symbolic abstractions within the comprehensive Dalvik bytecode language. These abstractions are accessible to automated analysis, and they can be conveniently added to existing app analysis tools using minor changes in their semantics. Second, we show that our abstractions are faithful by providing the first computational soundness result for Dalvik bytecode, i.e., the absence of attacks against our symbolically abstracted program entails the absence of any attacks against a suitable cryptographic program realization. We cast our computational soundness result in the CoSP framework, which makes the result modular and composable.Comment: Technical report for the ACM CCS 2016 conference pape
    • …
    corecore