2,168 research outputs found

    On kk-Gons and kk-Holes in Point Sets

    Get PDF
    We consider a variation of the classical Erd\H{o}s-Szekeres problems on the existence and number of convex kk-gons and kk-holes (empty kk-gons) in a set of nn points in the plane. Allowing the kk-gons to be non-convex, we show bounds and structural results on maximizing and minimizing their numbers. Most noteworthy, for any kk and sufficiently large nn, we give a quadratic lower bound for the number of kk-holes, and show that this number is maximized by sets in convex position

    Toward the Rectilinear Crossing Number of KnK_n: New Drawings, Upper Bounds, and Asymptotics

    Get PDF
    Scheinerman and Wilf (1994) assert that `an important open problem in the study of graph embeddings is to determine the rectilinear crossing number of the complete graph K_n.' A rectilinear drawing of K_n is an arrangement of n vertices in the plane, every pair of which is connected by an edge that is a line segment. We assume that no three vertices are collinear, and that no three edges intersect in a point unless that point is an endpoint of all three. The rectilinear crossing number of K_n is the fewest number of edge crossings attainable over all rectilinear drawings of K_n. For each n we construct a rectilinear drawing of K_n that has the fewest number of edge crossings and the best asymptotics known to date. Moreover, we give some alternative infinite families of drawings of K_n with good asymptotics. Finally, we mention some old and new open problems.Comment: 13 Page

    Connectivity-Enforcing Hough Transform for the Robust Extraction of Line Segments

    Full text link
    Global voting schemes based on the Hough transform (HT) have been widely used to robustly detect lines in images. However, since the votes do not take line connectivity into account, these methods do not deal well with cluttered images. In opposition, the so-called local methods enforce connectivity but lack robustness to deal with challenging situations that occur in many realistic scenarios, e.g., when line segments cross or when long segments are corrupted. In this paper, we address the critical limitations of the HT as a line segment extractor by incorporating connectivity in the voting process. This is done by only accounting for the contributions of edge points lying in increasingly larger neighborhoods and whose position and directional content agree with potential line segments. As a result, our method, which we call STRAIGHT (Segment exTRAction by connectivity-enforcInG HT), extracts the longest connected segments in each location of the image, thus also integrating into the HT voting process the usually separate step of individual segment extraction. The usage of the Hough space mapping and a corresponding hierarchical implementation make our approach computationally feasible. We present experiments that illustrate, with synthetic and real images, how STRAIGHT succeeds in extracting complete segments in several situations where current methods fail.Comment: Submitted for publicatio
    • …
    corecore