104 research outputs found

    An alternative method for the design of time-varying feedback control systems

    Get PDF
    This article proposes to use a numeric strategy based on a discrete particle swarm optimization algorithm, to solve a problem related to compensator design in a time-varying feedback control system. At first, it is shown why it is possible to transform a problem of solving a system of linear Diophantine equations, into an optimization one. Some exemplary problems are shown. High quality solutions, i.e. in terms of accuracy and precision, were achieved in relatively short computation times

    Annales Mathematicae et Informaticae (34.)

    Get PDF

    Existence of global symmetries of divergence-free fields with first integrals

    Full text link
    The relationship between symmetry fields and first integrals of divergence-free vector fields is explored in three dimensions in light of its relevance to plasma physics and magnetic confinement fusion. A Noether-type Theorem is known: for each such symmetry, there corresponds a first integral. The extent to which the converse is true is investigated. In doing so, a reformulation of this Noether-type Theorem is found for which the converse holds on what is called the toroidal region. Some consequences of the methods presented are quick proofs of the existence of flux coordinates for magnetic fields in high generality; without needing to assume a symmetry such as in the cases of magneto-hydrostatics (MHS) or quasi-symmetry.Comment: 31 pages, 3 figures. This version of the article features an example involving Reeb cylinders whose idea was suggested by Daniel Peralta-Sala

    Annales Mathematicae et Informaticae 2007

    Get PDF

    New Techniques for Polynomial System Solving

    Get PDF
    Since any encryption map may be viewed as a polynomial map between finite dimensional vector spaces over finite fields, the security of a cryptosystem can be examined by studying the difficulty of solving large systems of multivariate polynomial equations. Therefore, algebraic attacks lead to the task of solving polynomial systems over finite fields. In this thesis, we study several new algebraic techniques for polynomial system solving over finite fields, especially over the finite field with two elements. Instead of using traditional Gröbner basis techniques we focus on highly developed methods from several other areas like linear algebra, discrete optimization, numerical analysis and number theory. We study some techniques from combinatorial optimization to transform a polynomial system solving problem into a (sparse) linear algebra problem. We highlight two new kinds of hybrid techniques. The first kind combines the concept of transforming combinatorial infeasibility proofs to large systems of linear equations and the concept of mutants (finding special lower degree polynomials). The second kind uses the concept of mutants to optimize the Border Basis Algorithm. We study recent suggestions of transferring a system of polynomial equations over the finite field with two elements into a system of polynomial equalities and inequalities over the set of integers (respectively over the set of reals). In particular, we develop several techniques and strategies for converting the polynomial system of equations over the field with two elements to a polynomial system of equalities and inequalities over the reals (respectively over the set of integers). This enables us to make use of several algorithms in the field of discrete optimization and number theory. Furthermore, this also enables us to investigate the use of numerical analysis techniques such as the homotopy continuation methods and Newton's method. In each case several conversion techniques have been developed, optimized and implemented. Finally, the efficiency of the developed techniques and strategies is examined using standard cryptographic examples such as CTC and HFE. Our experimental results show that most of the techniques developed are highly competitive to state-of-the-art algebraic techniques

    Non-acyclicity of coset lattices and generation of finite groups

    Get PDF

    Automation and Control Architecture for Hybrid Pipeline Robots

    Get PDF
    The aim of this research project, towards the automation of the Hybrid Pipeline Robot (HPR), is the development of a control architecture and strategy, based on reconfiguration of the control strategy for speed-controlled pipeline operations and self-recovering action, while performing energy and time management. The HPR is a turbine powered pipeline device where the flow energy is converted to mechanical energy for traction of the crawler vehicle. Thus, the device is flow dependent, compromising the autonomy, and the range of tasks it can perform. The control strategy proposes pipeline operations supervised by a speed control, while optimizing the energy, solved as a multi-objective optimization problem. The states of robot cruising and self recovering, are controlled by solving a neuro-dynamic programming algorithm for energy and time optimization, The robust operation of the robot includes a self-recovering state either after completion of the mission, or as a result of failures leading to the loss of the robot inside the pipeline, and to guaranteeing the HPR autonomy and operations even under adverse pipeline conditions Two of the proposed models, system identification and tracking system, based on Artificial Neural Networks, have been simulated with trial data. Despite the satisfactory results, it is necessary to measure a full set of robot’s parameters for simulating the complete control strategy. To solve the problem, an instrumentation system, consisting on a set of probes and a signal conditioning board, was designed and developed, customized for the HPR’s mechanical and environmental constraints. As a result, the contribution of this research project to the Hybrid Pipeline Robot is to add the capabilities of energy management, for improving the vehicle autonomy, increasing the distances the device can travel inside the pipelines; the speed control for broadening the range of operations; and the self-recovery capability for improving the reliability of the device in pipeline operations, lowering the risk of potential loss of the robot inside the pipeline, causing the degradation of pipeline performance. All that means the pipeline robot can target new market sectors that before were prohibitive

    Glosarium Matematika

    Get PDF

    Glosarium Matematika

    Get PDF
    273 p.; 24 cm
    • …
    corecore