71 research outputs found

    High-performance Implementations and Large-scale Validation of the Link-wise Artificial Compressibility Method

    Get PDF
    The link-wise artificial compressibility method (LW-ACM) is a recent formulation of the artificial compressibility method for solving the incompressible Navier-Stokes equations. Two implementations of the LW-ACM in three dimensions on CUDA enabled GPUs are described. The first one is a modified version of a stateof-the-art CUDA implementation of the lattice Boltzmann method (LBM), showing that an existing GPU LBM solver might easily be adapted to LW-ACM. The second one follows a novel approach, which leads to a performance increase of up to 1.8 compared to the LBM implementation considered here, while reducing the memory requirements by a factor of 5.25. Large-scale simulations of the lid-driven cubic cavity at Reynolds number Re = 2000 were performed for both LW-ACM and LBM. Comparison of the simulation results against spectral elements reference data shows that LW-ACM performs almost as well as multiple-relaxation-time LBM in terms of accurac

    Simulation of shear-driven flows:transition with a free surface and confined turbulence

    Get PDF
    The research work reported in the present dissertation is aimed at the analysis of complex physical phenomena involving instabilities and nonlinearities occurring in fluids through state-of-the-art numerical modeling. Solutions of intricate fluid physics problems are devised in two particularly arduous situations: fluid domains with moving boundaries and the high-Reynolds-number regime dominated by nonlinear convective effects. Shear-driven flows of incompressible Newtonian fluids enclosed in cavities of varying geometries are thoroughly investigated in the two following frameworks: transition with a free surface and confined turbulence. The physical system we consider is made of an incompressible Newtonian fluid filling a bounded, or partially bounded cavity. A series of shear-driven flows are easily generated by setting in motion some part of the container boundary. These driven-cavity flows are not only technologically important, they are of great scientific interest because they display almost all physical fluid phenomena that can possibly occur in incompressible flows, and this in the simplest geometrical settings. Thus corner eddies, secondary flows, longitudinal vortices, complex three-dimensional patterns, chaotic particle motions, nonuniqueness, transition, and turbulence all occur naturally and can be studied in the same geometry. This facilitates the comparison of results from experiments, analysis, and computation over the whole range of Reynolds numbers. The flows under consideration are part of a larger class of confined flows driven by linear or angular momentum gradients. This dissertation reports a detailed study of a novel numerical method developed for the simulation of an unsteady free-surface flow in three-space-dimensions. This method relies on a moving-grid technique to solve the Navier-Stokes equations expressed in the arbitrary Lagrangian-Eulerian (ALE) kinematics and discretized by the spectral element method. A comprehensive analysis of the continuous and discretized formulations of the general problem in the ALE frame, with nonlinear, non-homogeneous and unsteady boundary conditions is presented. In this dissertation, we first consider in the internal turbulent flow of a fluid enclosed in a bounded cubical cavity driven by the constant translation of its lid. The solution of this flow relied on large-eddy simulations, which served to improve our physical understanding of this complex flow dynamics. Subsequently, a novel subgrid model based on approximate deconvolution methods coupled with a dynamic mixed scale model was devised. The large-eddy simulation of the lid-driven cubical cavity flow based on this novel subgrid model has shown improvements over traditional subgrid-viscosity type of models. Finally a new interpretation of approximate deconvolution models when used with implicit filtering as a way to approximate the projective grid filter was given. This led to the introduction of the grid filter models. Through the use of a newly-developed method of numerical simulation, in this dissertation we solve unsteady flows with a flat and moving free-surface in the transitional regime. These flows are the incompressible flow of a viscous fluid enclosed in a cylindrical container with an open top surface and driven by the steady rotation of the bottom wall. New flow states are investigated based on the fully three-dimensional solution of the Navier-Stokes equations for these free-surface cylindrical swirling flows, without resorting to any symmetry properties unlike all other results available in the literature. To our knowledge, this study delivers the most general available results for this free-surface problem due to its original mathematical treatment. This second part of the dissertation is a basic research task directed at increasing our understanding of the influence of the presence of a free surface on the intricate transitional flow dynamics of shear-driven flows

    The Dune framework: Basic concepts and recent developments

    Get PDF
    This paper presents the basic concepts and the module structure of the Distributed and Unified Numerics Environment and reflects on recent developments and general changes that happened since the release of the first Dune version in 2007 and the main papers describing that state Bastian etal. (2008a, 2008b). This discussion is accompanied with a description of various advanced features, such as coupling of domains and cut cells, grid modifications such as adaptation and moving domains, high order discretizations and node level performance, non-smooth multigrid methods, and multiscale methods. A brief discussion on current and future development directions of the framework concludes the paper

    Model Validation and Simulation

    Get PDF
    The Bauhaus Summer School series provides an international forum for an exchange of methods and skills related to the interaction between different disciplines of modern engineering science. The 2012 civil engineering course was held in August over two weeks at Bauhaus-Universität Weimar. The overall aim was the exchange of research and modern scientific approaches in the field of model validation and simulation between well-known experts acting as lecturers and active students. Besides these educational intentions the social and cultural component of the meeting has been in the focus. 48 graduate and doctoral students from 20 different countries and 22 lecturers from 12 countries attended this summer school. Among other aspects, this activity can be considered successful as it raised the sensitivity towards both the significance of research in civil engineering and the role of intercultural exchange. This volume summarizes and publishes some of the results: abstracts of key note papers presented by the experts and selected student research works. The overview reflects the quality of this summer school. Furthermore the individual contributions confirm that for active students this event has been a research forum and a special opportunity to learn from the experiences of the researchers in terms of methodology and strategies for research implementation in their current work

    Localized model reduction for parameterized problems

    Get PDF
    In this contribution we present a survey of concepts in localized model order reduction methods for parameterized partial differential equations. The key concept of localized model order reduction is to construct local reduced spaces that have only support on part of the domain and compute a global approximation by a suitable coupling of the local spaces. In detail, we show how optimal local approximation spaces can be constructed and approximated by random sampling. An overview of possible conforming and non-conforming couplings of the local spaces is provided and corresponding localized a posteriori error estimates are derived. We introduce concepts of local basis enrichment, which includes a discussion of adaptivity. Implementational aspects of localized model reduction methods are addressed. Finally, we illustrate the presented concepts for multiscale, linear elasticity and fluid-flow problems, providing several numerical experiments. This work has been accepted as a chapter in P. Benner, S. Grivet-Talocia, A. Quarteroni, G. Rozza, W.H.A. Schilders, L.M. Sileira. Handbook on Model Order Reduction. Walter De Gruyter GmbH, Berlin, 2019+

    Seismic prediction and imaging of geological structures ahead of a tunnel using surface waves

    Get PDF
    To improve the performance and safety of tunnel constructions, we introduce a new seismic prediction method utilizing tunnel surface waves to detect relevant geological structures ahead of the tunnel face. On the basis of both synthetic and field data, we investigate the propagation characteristics of such surface waves propagating along the tunnel wall. We further introduce a simple but robust automatic prediction scheme that can estimate the distance to a reflector ahead of the tunnel

    Multiphysics simulations: challenges and opportunities.

    Full text link

    Software concepts and algorithms for an efficient and scalable parallel finite element method

    Get PDF
    Software packages for the numerical solution of partial differential equations (PDEs) using the finite element method are important in different fields of research. The basic data structures and algorithms change in time, as the user\'s requirements are growing and the software must efficiently use the newest highly parallel computing systems. This is the central point of this work. To make efficiently use of parallel computing systems with growing number of independent basic computing units, i.e.~CPUs, we have to combine data structures and algorithms from different areas of mathematics and computer science. Two crucial parts are a distributed mesh and parallel solver for linear systems of equations. For both there exists multiple independent approaches. In this work we argue that it is necessary to combine both of them to allow for an efficient and scalable implementation of the finite element method. First, we present concepts, data structures and algorithms for distributed meshes, which allow for local refinement. The central point of our presentation is to provide arbitrary geometrical information of the mesh and its distribution to the linear solver. A large part of the overall computing time of the finite element method is spend by the linear solver. Thus, its parallelization is of major importance. Based on the presented concept for distributed meshes, we preset several different linear solver methods. Hereby we concentrate on general purpose linear solver, which makes only little assumptions about the systems to be solver. For this, a new FETI-DP (Finite Element Tearing and Interconnect - Dual Primal) method is proposed. Those the standard FETI-DP method is quasi optimal from a mathematical point of view, its not possible to implement it efficiently for a large number of processors (> 10,000). The main reason is a relatively small but globally distributed coarse mesh problem. To circumvent this problem, we propose a new multilevel FETI-DP method which hierarchically decompose the coarse grid problem. This leads to a more local communication pattern for solver the coarse grid problem and makes it possible to scale for a large number of processors. Besides the parallelization of the finite element method, we discuss an approach to speed up serial computations of existing finite element packages. In many computations the PDE to be solved consists of more than one variable. This is especially the case in multi-physics modeling. Observation show that in many of these computation the solution structure of the variables is different. But in the standard finite element method, only one mesh is used for the discretization of all variables. We present a multi-mesh finite element method, which allows to discretize a system of PDEs with two independently refined meshes.Softwarepakete zur numerischen Lösung partieller Differentialgleichungen mit Hilfe der Finiten-Element-Methode sind in vielen Forschungsbereichen ein wichtiges Werkzeug. Die dahinter stehenden Datenstrukturen und Algorithmen unterliegen einer ständigen Neuentwicklung um den immer weiter steigenden Anforderungen der Nutzergemeinde gerecht zu werden und um neue, hochgradig parallel Rechnerarchitekturen effizient nutzen zu können. Dies ist auch der Kernpunkt dieser Arbeit. Um parallel Rechnerarchitekturen mit einer immer höher werdenden Anzahl an von einander unabhängigen Recheneinheiten, z.B.~Prozessoren, effizient Nutzen zu können, müssen Datenstrukturen und Algorithmen aus verschiedenen Teilgebieten der Mathematik und Informatik entwickelt und miteinander kombiniert werden. Im Kern sind dies zwei Bereiche: verteilte Gitter und parallele Löser für lineare Gleichungssysteme. Für jedes der beiden Teilgebiete existieren unabhängig voneinander zahlreiche Ansätze. In dieser Arbeit wird argumentiert, dass für hochskalierbare Anwendungen der Finiten-Elemente-Methode nur eine Kombination beider Teilgebiete und die Verknüpfung der darunter liegenden Datenstrukturen eine effiziente und skalierbare Implementierung ermöglicht. Zuerst stellen wir Konzepte vor, die parallele verteile Gitter mit entsprechenden Adaptionstrategien ermöglichen. Zentraler Punkt ist hier die Informationsaufbereitung für beliebige Löser linearer Gleichungssysteme. Beim Lösen partieller Differentialgleichung mit der Finiten Elemente Methode wird ein großer Teil der Rechenzeit für das Lösen der dabei anfallenden linearen Gleichungssysteme aufgebracht. Daher ist deren Parallelisierung von zentraler Bedeutung. Basierend auf dem vorgestelltem Konzept für verteilten Gitter, welches beliebige geometrische Informationen für die linearen Löser aufbereiten kann, präsentieren wir mehrere unterschiedliche Lösermethoden. Besonders Gewicht wird dabei auf allgemeine Löser gelegt, die möglichst wenig Annahmen über das zu lösende System machen. Hierfür wird die FETI-DP (Finite Element Tearing and Interconnect - Dual Primal) Methode weiterentwickelt. Obwohl die FETI-DP Methode vom mathematischen Standpunkt her als quasi-optimal bezüglich der parallelen Skalierbarkeit gilt, kann sie für große Anzahl an Prozessoren (> 10.000) nicht mehr effizient implementiert werden. Dies liegt hauptsächlich an einem verhältnismäßig kleinem aber global verteilten Grobgitterproblem. Wir stellen eine Multilevel FETI-DP Methode vor, die dieses Problem durch eine hierarchische Komposition des Grobgitterproblems löst. Dadurch wird die Kommunikation entlang des Grobgitterproblems lokalisiert und die Skalierbarkeit der FETI-DP Methode auch für große Anzahl an Prozessoren sichergestellt. Neben der Parallelisierung der Finiten-Elemente-Methode beschäftigen wir uns in dieser Arbeit mit der Ausnutzung von bestimmten Voraussetzung um auch die sequentielle Effizienz bestehender Implementierung der Finiten-Elemente-Methode zu steigern. In vielen Fällen müssen partielle Differentialgleichungen mit mehreren Variablen gelöst werden. Sehr häufig ist dabei zu beobachten, insbesondere bei der Modellierung mehrere miteinander gekoppelter physikalischer Phänomene, dass die Lösungsstruktur der unterschiedlichen Variablen entweder schwach oder vollständig voneinander entkoppelt ist. In den meisten Implementierungen wird dabei nur ein Gitter zur Diskretisierung aller Variablen des Systems genutzt. Wir stellen eine Finite-Elemente-Methode vor, bei der zwei unabhängig voneinander verfeinerte Gitter genutzt werden können um ein System partieller Differentialgleichungen zu lösen
    • …
    corecore