28,172 research outputs found

    A Review of Verbal and Non-Verbal Human-Robot Interactive Communication

    Get PDF
    In this paper, an overview of human-robot interactive communication is presented, covering verbal as well as non-verbal aspects of human-robot interaction. Following a historical introduction, and motivation towards fluid human-robot communication, ten desiderata are proposed, which provide an organizational axis both of recent as well as of future research on human-robot communication. Then, the ten desiderata are examined in detail, culminating to a unifying discussion, and a forward-looking conclusion

    Introduction: The Third International Conference on Epigenetic Robotics

    Get PDF
    This paper summarizes the paper and poster contributions to the Third International Workshop on Epigenetic Robotics. The focus of this workshop is on the cross-disciplinary interaction of developmental psychology and robotics. Namely, the general goal in this area is to create robotic models of the psychological development of various behaviors. The term "epigenetic" is used in much the same sense as the term "developmental" and while we could call our topic "developmental robotics", developmental robotics can be seen as having a broader interdisciplinary emphasis. Our focus in this workshop is on the interaction of developmental psychology and robotics and we use the phrase "epigenetic robotics" to capture this focus

    An integrated theory of language production and comprehension

    Get PDF
    Currently, production and comprehension are regarded as quite distinct in accounts of language processing. In rejecting this dichotomy, we instead assert that producing and understanding are interwoven, and that this interweaving is what enables people to predict themselves and each other. We start by noting that production and comprehension are forms of action and action perception. We then consider the evidence for interweaving in action, action perception, and joint action, and explain such evidence in terms of prediction. Specifically, we assume that actors construct forward models of their actions before they execute those actions, and that perceivers of others' actions covertly imitate those actions, then construct forward models of those actions. We use these accounts of action, action perception, and joint action to develop accounts of production, comprehension, and interactive language. Importantly, they incorporate well-defined levels of linguistic representation (such as semantics, syntax, and phonology). We show (a) how speakers and comprehenders use covert imitation and forward modeling to make predictions at these levels of representation, (b) how they interweave production and comprehension processes, and (c) how they use these predictions to monitor the upcoming utterances. We show how these accounts explain a range of behavioral and neuroscientific data on language processing and discuss some of the implications of our proposal

    Spotting Agreement and Disagreement: A Survey of Nonverbal Audiovisual Cues and Tools

    Get PDF
    While detecting and interpreting temporal patterns of non–verbal behavioral cues in a given context is a natural and often unconscious process for humans, it remains a rather difficult task for computer systems. Nevertheless, it is an important one to achieve if the goal is to realise a naturalistic communication between humans and machines. Machines that are able to sense social attitudes like agreement and disagreement and respond to them in a meaningful way are likely to be welcomed by users due to the more natural, efficient and human–centered interaction they are bound to experience. This paper surveys the nonverbal cues that could be present during agreement and disagreement behavioural displays and lists a number of tools that could be useful in detecting them, as well as a few publicly available databases that could be used to train these tools for analysis of spontaneous, audiovisual instances of agreement and disagreement

    Computational and Robotic Models of Early Language Development: A Review

    Get PDF
    We review computational and robotics models of early language learning and development. We first explain why and how these models are used to understand better how children learn language. We argue that they provide concrete theories of language learning as a complex dynamic system, complementing traditional methods in psychology and linguistics. We review different modeling formalisms, grounded in techniques from machine learning and artificial intelligence such as Bayesian and neural network approaches. We then discuss their role in understanding several key mechanisms of language development: cross-situational statistical learning, embodiment, situated social interaction, intrinsically motivated learning, and cultural evolution. We conclude by discussing future challenges for research, including modeling of large-scale empirical data about language acquisition in real-world environments. Keywords: Early language learning, Computational and robotic models, machine learning, development, embodiment, social interaction, intrinsic motivation, self-organization, dynamical systems, complexity.Comment: to appear in International Handbook on Language Development, ed. J. Horst and J. von Koss Torkildsen, Routledg

    Determining what people feel and think when interacting with humans and machines

    Get PDF
    Any interactive software program must interpret the users’ actions and come up with an appropriate response that is intelligable and meaningful to the user. In most situations, the options of the user are determined by the software and hardware and the actions that can be carried out are unambiguous. The machine knows what it should do when the user carries out an action. In most cases, the user knows what he has to do by relying on conventions which he may have learned by having had a look at the instruction manual, having them seen performed by somebody else, or which he learned by modifying a previously learned convention. Some, or most, of the times he just finds out by trial and error. In user-friendly interfaces, the user knows, without having to read extensive manuals, what is expected from him and how he can get the machine to do what he wants. An intelligent interface is so-called, because it does not assume the same kind of programming of the user by the machine, but the machine itself can figure out what the user wants and how he wants it without the user having to take all the trouble of telling it to the machine in the way the machine dictates but being able to do it in his own words. Or perhaps by not using any words at all, as the machine is able to read off the intentions of the user by observing his actions and expressions. Ideally, the machine should be able to determine what the user wants, what he expects, what he hopes will happen, and how he feels

    Controlling the Gaze of Conversational Agents

    Get PDF
    We report on a pilot experiment that investigated the effects of different eye gaze behaviours of a cartoon-like talking face on the quality of human-agent dialogues. We compared a version of the talking face that roughly implements some patterns of human-like behaviour with\ud two other versions. In one of the other versions the shifts in gaze were kept minimal and in the other version the shifts would occur randomly. The talking face has a number of restrictions. There is no speech recognition, so questions and replies have to be typed in by the users\ud of the systems. Despite this restriction we found that participants that conversed with the agent that behaved according to the human-like patterns appreciated the agent better than participants that conversed with the other agents. Conversations with the optimal version also\ud proceeded more efficiently. Participants needed less time to complete their task
    • 

    corecore