32,368 research outputs found

    Computational metric embeddings

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 141-145).We study the problem of computing a low-distortion embedding between two metric spaces. More precisely given an input metric space M we are interested in computing in polynomial time an embedding into a host space M' with minimum multiplicative distortion. This problem arises naturally in many applications, including geometric optimization, visualization, multi-dimensional scaling, network spanners, and the computation of phylogenetic trees. We focus on the case where the host space is either a euclidean space of constant dimension such as the line and the plane, or a graph metric of simple topological structure such as a tree. For Euclidean spaces, we present the following upper bounds. We give an approximation algorithm that, given a metric space that embeds into R1 with distortion c, computes an embedding with distortion c(1) [delta]3/4 (A denotes the ratio of the maximum over the minimum distance). For higher-dimensional spaces, we obtain an algorithm which, for any fixed d > 2, given an ultrametric that embeds into Rd with distortion c, computes an embedding with distortion co(1). We also present an algorithm achieving distortion c logo(1) [delta] for the same problem. We complement the above upper bounds by proving hardness of computing optimal, or near-optimal embeddings. When the input space is an ultrametric, we show that it is NP-hard to compute an optimal embedding into R2 under the ... norm. Moreover, we prove that for any fixed d > 2, it is NP-hard to approximate the minimum distortion embedding of an n-point metric space into Rd within a factor of Q(n1/(17d)). Finally, we consider the problem of embedding into tree metrics. We give a 0(1)approximation algorithm for the case where the input is the shortest-path metric of an unweighted graph.(cont.) For general metric spaces, we present an algorithm which, given an n-point metric that embeds into a tree with distortion c, computes an embedding with distortion (clog n)o ... . By composing this algorithm with an algorithm for embedding trees into R1, we obtain an improved algorithm for embedding general metric spaces into R1.by Anastasios Sidiropoulos.Ph.D

    Probabilistic embeddings of the Fr\'echet distance

    Full text link
    The Fr\'echet distance is a popular distance measure for curves which naturally lends itself to fundamental computational tasks, such as clustering, nearest-neighbor searching, and spherical range searching in the corresponding metric space. However, its inherent complexity poses considerable computational challenges in practice. To address this problem we study distortion of the probabilistic embedding that results from projecting the curves to a randomly chosen line. Such an embedding could be used in combination with, e.g. locality-sensitive hashing. We show that in the worst case and under reasonable assumptions, the discrete Fr\'echet distance between two polygonal curves of complexity tt in Rd\mathbb{R}^d, where d∈{2,3,4,5}d\in\lbrace 2,3,4,5\rbrace, degrades by a factor linear in tt with constant probability. We show upper and lower bounds on the distortion. We also evaluate our findings empirically on a benchmark data set. The preliminary experimental results stand in stark contrast with our lower bounds. They indicate that highly distorted projections happen very rarely in practice, and only for strongly conditioned input curves. Keywords: Fr\'echet distance, metric embeddings, random projectionsComment: 27 pages, 11 figure
    • …
    corecore