3,686 research outputs found

    An Advanced Heuristic for Multiple-Option Spare Parts Procurement after End-of-Production

    Get PDF
    After-sales service is a major profit generator for more and more OEMs in industries with durable products. Successful engagement in after-sales service improves customer loyalty and allows for competitive differentiation through superior service like an extended service period after end of production during which customers are guaranteed to be provided with service parts. In order to fulfill the service guarantee in these cases, an effective and efficient spare parts management has to be implemented, which is challenging due to the high uncertainty concerning spare parts demand over such a long time horizon. The traditional way of spare parts acquisition for the service phase is to set up a huge final lot at the end of regular production of the parent product which is sufficient to fulfill demand up to the end of the service time. This strategy results in extremely high inventory levels over a long period and generates major holding costs and a high level of obsolescence risk. With increasing service time more flexible options for spare parts procurement after end of production gain more and more importance. In our paper we focus on the two most relevant ones, namely extra production and remanufacturing. Managing all three options leads to a complicated stochastic dynamic decision problem. For that problem type, however, a quite simple combined decision rule with order-up-to levels for extra production and remanufacturing turns out to be very effective. We propose a heuristic procedure for parameter determination which accounts for the main stochastic and dynamic interactions between the different order-up-to levels, but still consists of quite simple calculations so that it can be applied to problem instances of arbitrary size. In a numerical study we show that this heuristic performs extremely well under a wide range of conditions so that it can be strongly recommended as a decision support tool for the multi-option spare parts procurement problem

    Stochastic multi-period multi-product multi-objective Aggregate Production Planning model in multi-echelon supply chain

    Get PDF
    In this paper a multi-period multi-product multi-objective aggregate production planning (APP) model is proposed for an uncertain multi-echelon supply chain considering financial risk, customer satisfaction, and human resource training. Three conflictive objective functions and several sets of real constraints are considered concurrently in the proposed APP model. Some parameters of the proposed model are assumed to be uncertain and handled through a two-stage stochastic programming (TSSP) approach. The proposed TSSP is solved using three multi-objective solution procedures, i.e., the goal attainment technique, the modified ε-constraint method, and STEM method. The whole procedure is applied in an automotive resin and oil supply chain as a real case study wherein the efficacy and applicability of the proposed approaches are illustrated in comparison with existing experimental production planning method

    Production planning and inventory control of two-product recovery system in reverse logistics

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Applying Revenue Management to the Reverse Supply Chain

    Get PDF
    We study the disposition decision for product returns in a closed-loop supply chain. Motivated by the asset recovery process at IBM, we consider two disposition alternatives. Returns may be either refurbished for reselling or dismantled for spare parts. Reselling a refurbished unit typically yields higher unit margins. However, demand is uncertain. A common policy in many firms is to rank disposition alternatives by unit margins. We show that a revenue management approach to the disposition decision which explicitly incorporates demand uncertainty can increase profits significantly. We discuss analogies between the disposition problem and the classical airline revenue management problem. We then develop single period and multi-period stochastic optimization models for the disposition problem. Analyzing these models, we show that the optimal allocation balances expected marginal profits across the disposition alternatives. A detailed numerical study reveals that a revenue management approach to the disposition problem significantly outperforms the current practice of focusing exclusively on high-margin options, and we identify conditions under which this improvement is the highest. We also show that the value recovered from the returned products critically depends on the coordination between forward and reverse supply chain decisions

    Assessing the benefits of remanufacturing option under one-way substitution and capacity constraint

    Get PDF
    In this article, we investigate the profitability of remanufacturing option when the manufactured and remanufactured products are segmented to different markets and the production capacity is finite. It is assumed that remanufactured products can be substituted by the manufactured ones. A single period profit model under substitution is constructed to investigate the system conditions under which remanufacturing is profitable. We present analytical findings and computational results to show profitability of remanufacturing option under substitution policy subject to a capacity constraint of the joint manufacturing/remanufactruing facility

    Multistage decisions and risk in Markov decision processes: towards effective approximate dynamic programming architectures

    Get PDF
    The scientific domain of this thesis is optimization under uncertainty for discrete event stochastic systems. In particular, this thesis focuses on the practical implementation of the Dynamic Programming (DP) methodology to discrete event stochastic systems. Unfortunately DP in its crude form suffers from three severe computational obstacles that make its imple-mentation to such systems an impossible task. This thesis addresses these obstacles by developing and executing practical Approximate Dynamic Programming (ADP) techniques. Specifically, for the purposes of this thesis we developed the following ADP techniques. The first one is inspired from the Reinforcement Learning (RL) literature and is termed as Real Time Approximate Dynamic Programming (RTADP). The RTADP algorithm is meant for active learning while operating the stochastic system. The basic idea is that the agent while constantly interacts with the uncertain environment accumulates experience, which enables him to react more optimal in future similar situations. While the second one is an off-line ADP procedure These ADP techniques are demonstrated on a variety of discrete event stochastic systems such as: i) a three stage queuing manufacturing network with recycle, ii) a supply chain of the light aromatics of a typical refinery, iii) several stochastic shortest path instances with a single starting and terminal state and iv) a general project portfolio management problem. Moreover, this work addresses, in a systematic way, the issue of multistage risk within the DP framework by exploring the usage of intra-period and inter-period risk sensitive utility functions. In this thesis we propose a special structure for an intra-period utility and compare the derived policies in several multistage instances.Ph.D.Committee Chair: Jay H. Lee; Committee Member: Martha Grover; Committee Member: Matthew J. Realff; Committee Member: Shabbir Ahmed; Committee Member: Stylianos Kavadia

    Stochastic Optimization Models for Perishable Products

    Get PDF
    For many years, researchers have focused on developing optimization models to design and manage supply chains. These models have helped companies in different industries to minimize costs, maximize performance while balancing their social and environmental impacts. There is an increasing interest in developing models which optimize supply chain decisions of perishable products. This is mainly because many of the products we use today are perishable, managing their inventory is challenging due to their short shelf life, and out-dated products become waste. Therefore, these supply chain decisions impact profitability and sustainability of companies and the quality of the environment. Perishable products wastage is inevitable when demand is not known beforehand. A number of models in the literature use simulation and probabilistic models to capture supply chain uncertainties. However, when demand distribution cannot be described using standard distributions, probabilistic models are not effective. In this case, using stochastic optimization methods is preferred over obtaining approximate inventory management policies through simulation. This dissertation proposes models to help businesses and non-prot organizations make inventory replenishment, pricing and transportation decisions that improve the performance of their system. These models focus on perishable products which either deteriorate over time or have a fixed shelf life. The demand and/or supply for these products and/or, the remaining shelf life are stochastic. Stochastic optimization models, including a two-stage stochastic mixed integer linear program, a two-stage stochastic mixed integer non linear program, and a chance constraint program are proposed to capture uncertainties. The objective is to minimize the total replenishment costs which impact prots and service rate. These models are motivated by applications in the vaccine distribution supply chain, and other supply chains used to distribute perishable products. This dissertation also focuses on developing solution algorithms to solve the proposed optimization models. The computational complexity of these models motivated the development of extensions to standard models used to solve stochastic optimization problems. These algorithms use sample average approximation (SAA) to represent uncertainty. The algorithms proposed are extensions of the stochastic Benders decomposition algorithm, the L-shaped method (LS). These extensions use Gomory mixed integer cuts, mixed-integer rounding cuts, and piecewise linear relaxation of bilinear terms. These extensions lead to the development of linear approximations of the models developed. Computational results reveal that the solution approach presented here outperforms the standard LS method. Finally, this dissertation develops case studies using real-life data from the Demographic Health Surveys in Niger and Bangladesh to build predictive models to meet requirements for various childhood immunization vaccines. The results of this study provide support tools for policymakers to design vaccine distribution networks
    corecore