25,275 research outputs found

    Phase Retrieval with Application to Optical Imaging

    Get PDF
    This review article provides a contemporary overview of phase retrieval in optical imaging, linking the relevant optical physics to the information processing methods and algorithms. Its purpose is to describe the current state of the art in this area, identify challenges, and suggest vision and areas where signal processing methods can have a large impact on optical imaging and on the world of imaging at large, with applications in a variety of fields ranging from biology and chemistry to physics and engineering

    Synthetic aperture imaging with intensity-only data

    Get PDF
    We consider imaging the reflectivity of scatterers from intensity-only data recorded by a single moving transducer that both emits and receives signals, forming a synthetic aperture. By exploiting frequency illumination diversity, we obtain multiple intensity measurements at each location, from which we determine field cross-correlations using an appropriate phase controlled illumination strategy and the inner product polarization identity. The field cross-correlations obtained this way do not, however, provide all the missing phase information because they are determined up to a phase that depends on the receiver's location. The main result of this paper is an algorithm with which we recover the field cross-correlations up to a single phase that is common to all the data measured over the synthetic aperture, so all the data are synchronized. Thus, we can image coherently with data over all frequencies and measurement locations as if full phase information was recorded

    High-resolution ab initio three-dimensional X-ray diffraction microscopy

    Full text link
    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.Comment: 22 pages, 11 figures, submitte
    corecore