1,300 research outputs found

    Inductive Definition and Domain Theoretic Properties of Fully Abstract

    Full text link
    A construction of fully abstract typed models for PCF and PCF^+ (i.e., PCF + "parallel conditional function"), respectively, is presented. It is based on general notions of sequential computational strategies and wittingly consistent non-deterministic strategies introduced by the author in the seventies. Although these notions of strategies are old, the definition of the fully abstract models is new, in that it is given level-by-level in the finite type hierarchy. To prove full abstraction and non-dcpo domain theoretic properties of these models, a theory of computational strategies is developed. This is also an alternative and, in a sense, an analogue to the later game strategy semantics approaches of Abramsky, Jagadeesan, and Malacaria; Hyland and Ong; and Nickau. In both cases of PCF and PCF^+ there are definable universal (surjective) functionals from numerical functions to any given type, respectively, which also makes each of these models unique up to isomorphism. Although such models are non-omega-complete and therefore not continuous in the traditional terminology, they are also proved to be sequentially complete (a weakened form of omega-completeness), "naturally" continuous (with respect to existing directed "pointwise", or "natural" lubs) and also "naturally" omega-algebraic and "naturally" bounded complete -- appropriate generalisation of the ordinary notions of domain theory to the case of non-dcpos.Comment: 50 page

    The complexity of the list homomorphism problem for graphs

    Get PDF
    We completely classify the computational complexity of the list H-colouring problem for graphs (with possible loops) in combinatorial and algebraic terms: for every graph H the problem is either NP-complete, NL-complete, L-complete or is first-order definable; descriptive complexity equivalents are given as well via Datalog and its fragments. Our algebraic characterisations match important conjectures in the study of constraint satisfaction problems.Comment: 12 pages, STACS 201

    Finiteness conditions for graph algebras over tropical semirings

    Full text link
    Connection matrices for graph parameters with values in a field have been introduced by M. Freedman, L. Lov{\'a}sz and A. Schrijver (2007). Graph parameters with connection matrices of finite rank can be computed in polynomial time on graph classes of bounded tree-width. We introduce join matrices, a generalization of connection matrices, and allow graph parameters to take values in the tropical rings (max-plus algebras) over the real numbers. We show that rank-finiteness of join matrices implies that these graph parameters can be computed in polynomial time on graph classes of bounded clique-width. In the case of graph parameters with values in arbitrary commutative semirings, this remains true for graph classes of bounded linear clique-width. B. Godlin, T. Kotek and J.A. Makowsky (2008) showed that definability of a graph parameter in Monadic Second Order Logic implies rank finiteness. We also show that there are uncountably many integer valued graph parameters with connection matrices or join matrices of fixed finite rank. This shows that rank finiteness is a much weaker assumption than any definability assumption.Comment: 12 pages, accepted for presentation at FPSAC 2014 (Chicago, June 29 -July 3, 2014), to appear in Discrete Mathematics and Theoretical Computer Scienc

    A logic with temporally accessible iteration

    Get PDF
    Deficiency in expressive power of the first-order logic has led to developing its numerous extensions by fixed point operators, such as Least Fixed-Point (LFP), inflationary fixed-point (IFP), partial fixed-point (PFP), etc. These logics have been extensively studied in finite model theory, database theory, descriptive complexity. In this paper we introduce unifying framework, the logic with iteration operator, in which iteration steps may be accessed by temporal logic formulae. We show that proposed logic FO+TAI subsumes all mentioned fixed point extensions as well as many other fixed point logics as natural fragments. On the other hand we show that over finite structures FO+TAI is no more expressive than FO+PFP. Further we show that adding the same machinery to the logic of monotone inductions (FO+LFP) does not increase its expressive power either

    On the Scope of the Universal-Algebraic Approach to Constraint Satisfaction

    Full text link
    The universal-algebraic approach has proved a powerful tool in the study of the complexity of CSPs. This approach has previously been applied to the study of CSPs with finite or (infinite) omega-categorical templates, and relies on two facts. The first is that in finite or omega-categorical structures A, a relation is primitive positive definable if and only if it is preserved by the polymorphisms of A. The second is that every finite or omega-categorical structure is homomorphically equivalent to a core structure. In this paper, we present generalizations of these facts to infinite structures that are not necessarily omega-categorical. (This abstract has been severely curtailed by the space constraints of arXiv -- please read the full abstract in the article.) Finally, we present applications of our general results to the description and analysis of the complexity of CSPs. In particular, we give general hardness criteria based on the absence of polymorphisms that depend on more than one argument, and we present a polymorphism-based description of those CSPs that are first-order definable (and therefore can be solved in polynomial time).Comment: Extended abstract appeared at 25th Symposium on Logic in Computer Science (LICS 2010). This version will appear in the LMCS special issue associated with LICS 201

    From Linear to Branching-Time Temporal Logics: Transfer of Semantics and Definability

    Get PDF
    This paper investigates logical aspects of combining linear orders as semantics for modal and temporal logics, with modalities for possible paths, resulting in a variety of branching time logics over classes of trees. Here we adopt a unified approach to the Priorean, Peircean and Ockhamist semantics for branching time logics, by considering them all as fragments of the latter, obtained as combinations, in various degrees, of languages and semantics for linear time with a modality for possible paths. We then consider a hierarchy of natural classes of trees and bundled trees arising from a given class of linear orders and show that in general they provide different semantics. We also discuss transfer of definability from linear orders to trees and introduce a uniform translation from Priorean to Peircean formulae which transfers definability of properties of linear orders to definability of properties of all paths in tree
    • …
    corecore