22 research outputs found

    Physiology of rodent olfactory bulb interneurons

    Get PDF
    The sense of olfaction is a central gateway of perceiving and evaluating an animal’s environment filled with volatile chemicals. It affects individual and social behavior in an evaluative way, i.e. by helping to find food sources, warning from dangers like toxins or predators or influencing mating choice. Already the first central station for vertebrate olfactory processing, the olfactory bulb (OB), is astonishingly complex. Its structure features several horizontal layers of signal transformation that includes a large variety of local interneurons (INs). Most of these cells are subject to adult neurogenesis, which rejuvenates and remodels the circuitry throughout life. One of those interneuron subtypes, the granule cell (GC), poses the most numerous cell type of the olfactory bulb. As the major synaptic connection of the bulb, linking different glomerular units, it participates in numerous reported tasks like odor discrimination or memory formation. Many of those capacities are attributable to the function of peculiar spines with long necks and enormous bulbar heads called gemmules. They accommodate pre- and postsynaptic specializations of the reciprocal synapse with mitral cells (MCs) that are topographically and functionally linked and feature many modes of signal integration and transmission. As of yet, the mechanistic underpinnings of activation and neurotransmitter release are not yet resolved in great detail. This gave rise to the first project of this thesis, which focusses on the detailed granule cell gemmule physiology during local glutamatergic activation. With the help of two-photon glutamate uncaging and concomitant calcium imaging, the spine could be selectively stimulated and its physiological dynamics tested. By the use of different pharmacological agents, we could verify the importance of voltage gated sodium channels (Nav) for local signal amplification and the involvement of NMDA and high voltage activated calcium channels (HVACCs) in the calcium elevation during local stimulation, which is important for γ-aminobutyric acid (GABA) release from the spine. The superthreshold depolarizing signal and strong calcium elevation during local input are exclusively restricted to the spine, which affirms the chemical and electrical isolation of gemmules from the rest of the cell. In this study we thereby confirmed the theoretical prediction of active computation within single spines in our system, emphasizing the functional importance of morphological compartmentalization for the cell’s physiology. The second largest population of interneurons in the olfactory bulb is located in the glomerular layer (GL) of the olfactory bulb and subsumes a plethora of different cell types, categorized in terms of molecular characteristics (mostly neurotransmitter), morphology and function. Among those, dopaminergic (DAergic) juxtaglomerular cells (JGCs) form a subpopulation, which the second part of this thesis is focused on. Innervated by the first or second synapse in the olfactory pathway, these cells exert strong influence in very early stages of olfactory signaling. The gating and transformation of inputs locally and very importantly also laterally over large distances originate from several factors. This cell grouping usually expresses two neurotransmitters at the same time, GABA and dopamine (DA), and encompass many different morphologies and synaptic arrangements with other cell types. Utilizing dopamine transporter (DAT) based staining methods in three animal populations differing in age and species, this study revealed a larger diversity of dopaminergic cell types in the glomerular layer. New ‘uniglomerular’ and a ‘clasping’ cell types were discriminated, showing distinct dendritic formations and glomerulus innervations, which was assessed with a new morphometric tool kit. The clasping cell type features dendritic specializations, densely clasping around single cell bodies. These morphological traits occur in higher abundance and complexity specifically among adult animals and could be structures of neurotransmitter output since they show strong calcium influx upon soma depolarization. Comparisons of the three animal populations showed age- and/or species-dependent changes in the subtype composition of dopaminergic JGCs. Concordant with recent research, the inclusion of age-dependent comparisons in bulbar studies turned out to be of great significance

    Physiology of rodent olfactory bulb interneurons

    Get PDF
    The sense of olfaction is a central gateway of perceiving and evaluating an animal’s environment filled with volatile chemicals. It affects individual and social behavior in an evaluative way, i.e. by helping to find food sources, warning from dangers like toxins or predators or influencing mating choice. Already the first central station for vertebrate olfactory processing, the olfactory bulb (OB), is astonishingly complex. Its structure features several horizontal layers of signal transformation that includes a large variety of local interneurons (INs). Most of these cells are subject to adult neurogenesis, which rejuvenates and remodels the circuitry throughout life. One of those interneuron subtypes, the granule cell (GC), poses the most numerous cell type of the olfactory bulb. As the major synaptic connection of the bulb, linking different glomerular units, it participates in numerous reported tasks like odor discrimination or memory formation. Many of those capacities are attributable to the function of peculiar spines with long necks and enormous bulbar heads called gemmules. They accommodate pre- and postsynaptic specializations of the reciprocal synapse with mitral cells (MCs) that are topographically and functionally linked and feature many modes of signal integration and transmission. As of yet, the mechanistic underpinnings of activation and neurotransmitter release are not yet resolved in great detail. This gave rise to the first project of this thesis, which focusses on the detailed granule cell gemmule physiology during local glutamatergic activation. With the help of two-photon glutamate uncaging and concomitant calcium imaging, the spine could be selectively stimulated and its physiological dynamics tested. By the use of different pharmacological agents, we could verify the importance of voltage gated sodium channels (Nav) for local signal amplification and the involvement of NMDA and high voltage activated calcium channels (HVACCs) in the calcium elevation during local stimulation, which is important for γ-aminobutyric acid (GABA) release from the spine. The superthreshold depolarizing signal and strong calcium elevation during local input are exclusively restricted to the spine, which affirms the chemical and electrical isolation of gemmules from the rest of the cell. In this study we thereby confirmed the theoretical prediction of active computation within single spines in our system, emphasizing the functional importance of morphological compartmentalization for the cell’s physiology. The second largest population of interneurons in the olfactory bulb is located in the glomerular layer (GL) of the olfactory bulb and subsumes a plethora of different cell types, categorized in terms of molecular characteristics (mostly neurotransmitter), morphology and function. Among those, dopaminergic (DAergic) juxtaglomerular cells (JGCs) form a subpopulation, which the second part of this thesis is focused on. Innervated by the first or second synapse in the olfactory pathway, these cells exert strong influence in very early stages of olfactory signaling. The gating and transformation of inputs locally and very importantly also laterally over large distances originate from several factors. This cell grouping usually expresses two neurotransmitters at the same time, GABA and dopamine (DA), and encompass many different morphologies and synaptic arrangements with other cell types. Utilizing dopamine transporter (DAT) based staining methods in three animal populations differing in age and species, this study revealed a larger diversity of dopaminergic cell types in the glomerular layer. New ‘uniglomerular’ and a ‘clasping’ cell types were discriminated, showing distinct dendritic formations and glomerulus innervations, which was assessed with a new morphometric tool kit. The clasping cell type features dendritic specializations, densely clasping around single cell bodies. These morphological traits occur in higher abundance and complexity specifically among adult animals and could be structures of neurotransmitter output since they show strong calcium influx upon soma depolarization. Comparisons of the three animal populations showed age- and/or species-dependent changes in the subtype composition of dopaminergic JGCs. Concordant with recent research, the inclusion of age-dependent comparisons in bulbar studies turned out to be of great significance

    Insects have the capacity for subjective experience

    Get PDF
    To what degree are non-human animals conscious? We propose that the most meaningful way to approach this question is from the perspective of functional neurobiology. Here we focus on subjective experience, which is a basic awareness of the world without further reflection on that awareness. This is considered the most basic form of consciousness. Tellingly, this capacity is supported by the integrated midbrain and basal ganglia structures, which are among the oldest and most highly conserved brain systems in vertebrates. A reasonable inference is that the capacity for subjective experience is both widespread and evolutionarily old within the vertebrate lineage. We argue that the insect brain supports functions analogous to those of the vertebrate midbrain and hence that insects may also have a capacity for subjective experience. We discuss the features of neural systems which can and cannot be expected to support this capacity as well as the relationship between our arguments based on neurobiological mechanism and our approach to the “hard problem” of conscious experience

    Examining Cerebellar Modulation of Mesolimbic Dopamine Transmission Using Fixed Potential Amperometry

    Get PDF
    Examining Cerebellar Modulation of Mesolimbic Dopamine Transmission Using Fixed Potential Amperometr

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF

    29th Annual Computational Neuroscience Meeting: CNS*2020

    Get PDF
    Meeting abstracts This publication was funded by OCNS. The Supplement Editors declare that they have no competing interests. Virtual | 18-22 July 202

    Sound processing in the mouse auditory cortex: organization, modulation, and transformation

    Full text link
    The auditory system begins with the cochlea, a frequency analyzer and signal amplifier with exquisite precision. As neural information travels towards higher brain regions, the encoding becomes less faithful to the sound waveform itself and more influenced by non-sensory factors such as top-down attentional modulation, local feedback modulation, and long-term changes caused by experience. At the level of auditory cortex (ACtx), such influences exhibit at multiple scales from single neurons to cortical columns to topographic maps, and are known to be linked with critical processes such as auditory perception, learning, and memory. How the ACtx integrates a wealth of diverse inputs while supporting adaptive and reliable sound representations is an important unsolved question in auditory neuroscience. This dissertation tackles this question using the mouse as an animal model. We begin by describing a detailed functional map of receptive fields within the mouse ACtx. Focusing on the frequency tuning properties, we demonstrated a robust tonotopic organization in the core ACtx fields (A1 and AAF) across cortical layers, neural signal types, and anesthetic states, confirming the columnar organization of basic sound processing in ACtx. We then studied the bottom-up input to ACtx columns by optogenetically activating the inferior colliculus (IC), and observed feedforward neuronal activity in the frequency-matched column, which also induced clear auditory percepts in behaving mice. Next, we used optogenetics to study layer 6 corticothalamic neurons (L6CT) that project heavily to the thalamus and upper layers of ACtx. We found that L6CT activation biases sound perception towards either enhanced detection or discrimination depending on its relative timing with respect to the sound, a process that may support dynamic filtering of auditory information. Finally, we optogenetically isolated cholinergic neurons in the basal forebrain (BF) that project to ACtx and studied their involvement in columnar ACtx plasticity during associative learning. In contrast to previous notions that BF just encodes reward and punishment, we observed clear auditory responses from the cholinergic neurons, which exhibited rapid learning-induced plasticity, suggesting that BF may provide a key instructive signal to drive adaptive plasticity in ACtx

    Sound processing in the mouse auditory cortex: organization, modulation, and transformation

    Full text link
    The auditory system begins with the cochlea, a frequency analyzer and signal amplifier with exquisite precision. As neural information travels towards higher brain regions, the encoding becomes less faithful to the sound waveform itself and more influenced by non-sensory factors such as top-down attentional modulation, local feedback modulation, and long-term changes caused by experience. At the level of auditory cortex (ACtx), such influences exhibit at multiple scales from single neurons to cortical columns to topographic maps, and are known to be linked with critical processes such as auditory perception, learning, and memory. How the ACtx integrates a wealth of diverse inputs while supporting adaptive and reliable sound representations is an important unsolved question in auditory neuroscience. This dissertation tackles this question using the mouse as an animal model. We begin by describing a detailed functional map of receptive fields within the mouse ACtx. Focusing on the frequency tuning properties, we demonstrated a robust tonotopic organization in the core ACtx fields (A1 and AAF) across cortical layers, neural signal types, and anesthetic states, confirming the columnar organization of basic sound processing in ACtx. We then studied the bottom-up input to ACtx columns by optogenetically activating the inferior colliculus (IC), and observed feedforward neuronal activity in the frequency-matched column, which also induced clear auditory percepts in behaving mice. Next, we used optogenetics to study layer 6 corticothalamic neurons (L6CT) that project heavily to the thalamus and upper layers of ACtx. We found that L6CT activation biases sound perception towards either enhanced detection or discrimination depending on its relative timing with respect to the sound, a process that may support dynamic filtering of auditory information. Finally, we optogenetically isolated cholinergic neurons in the basal forebrain (BF) that project to ACtx and studied their involvement in columnar ACtx plasticity during associative learning. In contrast to previous notions that BF just encodes reward and punishment, we observed clear auditory responses from the cholinergic neurons, which exhibited rapid learning-induced plasticity, suggesting that BF may provide a key instructive signal to drive adaptive plasticity in ACtx
    corecore