63 research outputs found

    RNA-dependent selenocysteine biosynthesis in eukaryotes and Archaea

    Get PDF
    Selenocysteine (Sec), the 21st genetically encoded amino acid, is the major metabolite of the micronutrient selenium. Sec is inserted into nascent proteins in response to a UGA codon. The substrate for ribosomal protein synthesis is selenocysteinyl-tRNASec. While the formation of Sec-tRNASec from seryl-tRNASec by a single bacterial enzyme selenocysteine synthase (SelA) has been well described, the mechanism of Sec-tRNASec formation in archaea and eukaryotes remained poorly understood. Herein, biochemical and genetic data provide evidence that, in contrast to bacteria, eukaryotes and archaea utilize a different route to Sec-tRNASec that requires the tRNASec-dependent conversion of O-phosphoserine (Sep) to Sec. In this two-step pathway, O-phosphoseryl-tRNA kinase (PSTK) first converts Ser-tRNASec to Sep-tRNASec. This misacylated tRNA is the obligatory precursor for a Sep-tRNA: Sec-tRNA synthase (SepSecS); this protein was previously annotated as Soluble Liver Antigen/Liver Pancreas (SLA/LP). SepSecS genes from Homo sapiens, the lower eukaryote Trypanosoma brucei and the archaea Methanocaldococcus jannaschii and Methanococcus maripaludis complement an Escherichia coli DeltaselA deletion strain in vivo. Furthermore, genetic analysis of selenoprotein biosynthesis in T. brucei in vivo demonstrated that eukaryotes have a single pathway to Sec-tRNASec that requires Sep-tRNASec as an intermediate. Finally, purified recombinant SepSecS converts Sep-tRNA Sec into Sec-tRNASec in vitro in the presence of sodium selenite and purified E. coli selenophosphate synthetase.The final step in Sec biosynthesis was further investigated by a structure-based mutational analysis of the M. maripaludis SepSecS and by determining the crystal structure of human SepSecS complexed with tRNA Sec, phosphoserine and thiophosphate at 2.8 A resolution. In vivo and in vitro enzyme assays support a mechanism of Sec-tRNASec formation based on pyridoxal phosphate, while the lack of active site cysteines demonstrates that a perselenide intermediate is not involved in SepSecS-catalyzed Sec formation. Two tRNASec molecules, with a fold distinct from other canonical tRNAs, bind to each human SepSecS tetramer through their unique 13 base-pair acceptor-TPsiC arm. The tRNA binding induces a conformational change in the enzyme\u27s active site that allows a Sep covalently attached to tRNASec, but not free Sep, to be oriented properly for the reaction to occur

    Complete genome sequence of Dehalogenimonas lykanthroporepellens type strain (BL-DC-9T) and comparison to “Dehalococcoides” strains

    Get PDF
    Dehalogenimonas lykanthroporepellens is the type species of the genus Dehalogenimonas, which belongs to a deeply branching lineage within the phylum Chloroflexi. This strictly anaerobic, mesophilic, non spore-forming, Gram-negative staining bacterium was first isolated from chlorinated solvent contaminated groundwater at a Superfund site located near Baton Rouge, Louisiana, USA. D. lykanthroporepellens was of interest for genome sequencing for two reasons: (a) an unusual ability to couple growth with reductive dechlorination of environmentally important polychlorinated aliphatic alkanes and (b) a phylogenetic position that is distant from previously sequenced bacteria. The 1,686,510 bp circular chromosome of strain BL-DC-9T contains 1,720 predicted protein coding genes, 47 tRNA genes, a single large subunit rRNA (23S-5S) locus, and a single, orphan, small subunit rRNA (16S) locus

    The Physiology and Evolution of Selenite Respiration in Bacteria

    Get PDF
    The selenium oxyanions selenate (Se(VI)) and selenite (Se(IV)) can be utilized by some bacteria and archaea as terminal electron acceptors in anaerobic respiration. Se(VI) and Se(IV) respiration is mediated by a phylogenetically and ecologically diverse array of organisms, suggesting that selenium respiration is ubiquitous in natural environments. Several respiratory Se(VI) reductases have been characterized in bacteria, revealing that Se(VI) respiration has evolved independently several times in this domain. Se(IV) respiration, in contrast, has yet to be characterized. I have purified and characterized the first respiratory Se(IV) reductase from Bacillus selenitireducens MLS10. The Se(IV) reductase appeared to purify as a single 80 kDa enzyme and contained both iron and molybdenum. The enzyme was highly specific for Se(IV). The genome of MLS10 demonstrated that this enzyme was part of an operon encoding a putative respiratory Se(IV) reductase (Srr) complex. Srr was electrophoretically purified from MLS10 periplasm using non-denaturing gels, and identified using in-gel enzyme assays for Se(IV) reducing activity. Multiple subunits from Srr were identified using liquid chromatography tandem mass spectrometry, confirming the operon codes for a Srr complex. The enzyme was designated SrrA. Phylogenetic analysis determined that SrrA was a member of the polysulfide reductase catalytic subunit (PsrA) and thiosulfate reductase catalytic subunit (PhsA) lineage of molybdopterin or tungstopterin bis(pyranopterin guanine dinucleotide) (Mo/W-bisPGD)-containing molybdoenzymes. Analysis of the operons associated with each catalytic subunit in the phylogeny revealed that putative PsrA, PhsA, and SrrA homologs did not form monophyletic clades with respect to one another. Furthermore, while putative Srr operons were not observed in archaea, Srr was present throughout the PsrA/PhsA lineage in bacteria. To determine if Srr is a reliable marker for Se(IV) respiration, I attempted to ascertain if two organisms, Bacillus beveridgei MLTeJB and Desulfitobacterium hafniense PCP-1, expressed Srr when cultivated in the presence of Se(IV). MLTeJB was shown to express SrrA when grown on both Se(VI) and Se(IV). Definitive identification of the Se(IV) reductase expressed by PCP-1 when grown on Se(VI) was not possible due to the low expression levels of the enzyme. This work represents the first physiological and evolutionary studies of Se(IV) respiration

    In silico identification of genes involved in selenium metabolism: evidence for a third selenium utilization trait

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Selenium (Se) is a trace element that occurs in proteins in the form of selenocysteine (Sec) and in tRNAs in the form of selenouridine (SeU). Selenophosphate synthetase (SelD) is required for both utilization traits. However, previous research also revealed SelDs in two organisms lacking Sec and SeU, suggesting a possible additional use of Se that is dependent on SelD.</p> <p>Results</p> <p>In this study, we conducted comparative genomics and phylogenetic analyses to characterize genes involved in Se utilization. Candidate genes identified included SelA/SelB and YbbB that define Sec and SeU pathways, respectively, and NADH oxidoreductase that is predicted to generate a SelD substrate. In addition, among 227 organisms containing SelD, 10 prokaryotes were identified that lacked SelA/SelB and YbbB. Investigation of <it>selD </it>neighboring genes in these organisms revealed a SirA-like protein and two hypothetical proteins HP1 and HP2 that were strongly linked to a novel Se utilization. With these new signature proteins, 32 bacteria and archaea were found that utilized these proteins, likely as part of the new Se utilization trait. Metabolic labeling of one organism containing an orphan SelD, <it>Enterococcus faecalis</it>, with <sup>75</sup>Se revealed a protein containing labile Se species that could be released by treatment with reducing agents, suggesting non-Sec utilization of Se in this organism.</p> <p>Conclusion</p> <p>These studies suggest the occurrence of a third Se utilization trait in bacteria and archaea.</p

    Evolution of selenophosphate synthetases: emergence and relocation of function through independent duplications and recurrent subfunctionalization

    Get PDF
    Selenoproteins are proteins that incorporate selenocysteine (Sec), a nonstandard amino acid encoded by UGA, normally a stop codon. Sec synthesis requires the enzyme Selenophosphate synthetase (SPS or SelD), conserved in all prokaryotic and eukaryotic genomes encoding selenoproteins. Here, we study the evolutionary history of SPS genes, providing a map of selenoprotein function spanning the whole tree of life. SPS is itself a selenoprotein in many species, although functionally equivalent homologs that replace the Sec site with cysteine (Cys) are common. Many metazoans, however, possess SPS genes with substitutions other than Sec or Cys (collectively referred to as SPS1). Using complementation assays in fly mutants, we show that these genes share a common function, which appears to be distinct from the synthesis of selenophosphate carried out by the Sec- and Cys- SPS genes (termed SPS2), and unrelated to Sec synthesis. We show here that SPS1 genes originated through a number of independent gene duplications from an ancestral metazoan selenoprotein SPS2 gene that most likely already carried the SPS1 function. Thus, in SPS genes, parallel duplications and subsequent convergent subfunctionalization have resulted in the segregation to different loci of functions initially carried by a single gene. This evolutionary history constitutes a remarkable example of emergence and evolution of gene function, which we have been able to trace thanks to the singular features of SPS genes, wherein the amino acid at a single site determines unequivocally protein function and is intertwined to the evolutionary fate of the entire selenoproteome

    Homology-based annotation of non-coding RNAs in the genomes of Schistosoma mansoni and Schistosoma japonicum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schistosomes are trematode parasites of the phylum Platyhelminthes. They are considered the most important of the human helminth parasites in terms of morbidity and mortality. Draft genome sequences are now available for <it>Schistosoma mansoni </it>and <it>Schistosoma japonicum</it>. Non-coding RNA (ncRNA) plays a crucial role in gene expression regulation, cellular function and defense, homeostasis, and pathogenesis. The genome-wide annotation of ncRNAs is a non-trivial task unless well-annotated genomes of closely related species are already available.</p> <p>Results</p> <p>A homology search for structured ncRNA in the genome of <it>S. mansoni </it>resulted in 23 types of ncRNAs with conserved primary and secondary structure. Among these, we identified rRNA, snRNA, SL RNA, SRP, tRNAs and RNase P, and also possibly MRP and 7SK RNAs. In addition, we confirmed five miRNAs that have recently been reported in <it>S. japonicum </it>and found two additional homologs of known miRNAs. The tRNA complement of <it>S. mansoni </it>is comparable to that of the free-living planarian <it>Schmidtea mediterranea</it>, although for some amino acids differences of more than a factor of two are observed: Leu, Ser, and His are overrepresented, while Cys, Meth, and Ile are underrepresented in <it>S. mansoni</it>. On the other hand, the number of tRNAs in the genome of <it>S. japonicum </it>is reduced by more than a factor of four. Both schistosomes have a complete set of minor spliceosomal snRNAs. Several ncRNAs that are expected to exist in the <it>S. mansoni </it>genome were not found, among them the telomerase RNA, vault RNAs, and Y RNAs.</p> <p>Conclusion</p> <p>The ncRNA sequences and structures presented here represent the most complete dataset of ncRNA from any lophotrochozoan reported so far. This data set provides an important reference for further analysis of the genomes of schistosomes and indeed eukaryotic genomes at large.</p

    Mining prokaryotic genomes for unknown amino acids: a stop-codon-based approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Selenocysteine and pyrrolysine are the 21st and 22nd amino acids, which are genetically encoded by stop codons. Since a number of microbial genomes have been completely sequenced to date, it is tempting to ask whether the 23rd amino acid is left undiscovered in these genomes. Recently, a computational study addressed this question and reported that no tRNA gene for unknown amino acid was found in genome sequences available. However, performance of the tRNA prediction program on an unknown tRNA family, which may have atypical sequence and structure, is unclear, thereby rendering their result inconclusive. A protein-level study will provide independent insight into the novel amino acid.</p> <p>Results</p> <p>Assuming that the 23rd amino acid is also encoded by a stop codon, we systematically predicted proteins that contain stop-codon-encoded amino acids from 191 prokaryotic genomes. Since our prediction method relies only on the conservation patterns of primary sequences, it also provides an opportunity to search novel selenoproteins and other readthrough proteins. It successfully recovered many of currently known selenoproteins and pyrrolysine proteins. However, no promising candidate for the 23rd amino acid was detected, and only one novel selenoprotein was predicted.</p> <p>Conclusion</p> <p>Our result suggests that the unknown amino acid encoded by stop codons does not exist, or its phylogenetic distribution is rather limited, which is in agreement with the previous study on tRNA. The method described here can be used in future studies to explore novel readthrough events from complete genomes, which are rapidly growing.</p

    Translational recoding: Canonical translation mechanisms reinterpreted.

    No full text
    During canonical translation, the ribosome moves along an mRNA from the start to the stop codon in exact steps of one codon at a time. The collinearity of the mRNA and the protein sequence is essential for the quality of the cellular proteome. Spontaneous errors in decoding or translocation are rare and result in a deficient protein. However, dedicated recoding signals in the mRNA can reprogram the ribosome to read the message in alternative ways. This review summarizes the recent advances in understanding the mechanisms of three types of recoding events: stop-codon readthrough, -1 ribosome frameshifting and translational bypassing. Recoding events provide insights into alternative modes of ribosome dynamics that are potentially applicable to other non-canonical modes of prokaryotic and eukaryotic translation

    Relaxation of Selective Constraints Causes Independent Selenoprotein Extinction in Insect Genomes

    Get PDF
    BACKGROUND: Selenoproteins are a diverse family of proteins notable for the presence of the 21st amino acid, selenocysteine. Until very recently, all metazoan genomes investigated encoded selenoproteins, and these proteins had therefore been believed to be essential for animal life. Challenging this assumption, recent comparative analyses of insect genomes have revealed that some insect genomes appear to have lost selenoprotein genes. METHODOLOGY/PRINCIPAL FINDINGS: In this paper we investigate in detail the fate of selenoproteins, and that of selenoprotein factors, in all available arthropod genomes. We use a variety of in silico comparative genomics approaches to look for known selenoprotein genes and factors involved in selenoprotein biosynthesis. We have found that five insect species have completely lost the ability to encode selenoproteins and that selenoprotein loss in these species, although so far confined to the Endopterygota infraclass, cannot be attributed to a single evolutionary event, but rather to multiple, independent events. Loss of selenoproteins and selenoprotein factors is usually coupled to the deletion of the entire no-longer functional genomic region, rather than to sequence degradation and consequent pseudogenisation. Such dynamics of gene extinction are consistent with the high rate of genome rearrangements observed in Drosophila. We have also found that, while many selenoprotein factors are concomitantly lost with the selenoproteins, others are present and conserved in all investigated genomes, irrespective of whether they code for selenoproteins or not, suggesting that they are involved in additional, non-selenoprotein related functions. CONCLUSIONS/SIGNIFICANCE: Selenoproteins have been independently lost in several insect species, possibly as a consequence of the relaxation in insects of the selective constraints acting across metazoans to maintain selenoproteins. The dispensability of selenoproteins in insects may be related to the fundamental differences in antioxidant defense between these animals and other metazoans.The work described here is funded by grants from the Spanish Ministery of Education and Science and from the BioSapiens European Network of Excellence to RG. CEC is reciepient of a pre-doctoral fellowship from the Spanish Ministery of Education and Science

    Codon-biased translation can be regulated by wobble-base tRNA modification systems during cellular stress responses

    Get PDF
    tRNA (tRNA) is a key molecule used for protein synthesis, with multiple points of stress-induced regulation that can include transcription, transcript processing, localization and ribonucleoside base modification. Enzyme-catalyzed modification of tRNA occurs at a number of base and sugar positions and has the potential to influence specific anticodon-codon interactions and regulate translation. Notably, altered tRNA modification has been linked to mitochondrial diseases and cancer progression. In this review, specific to Eukaryotic systems, we discuss how recent systems-level analyses using a bioanalytical platform have revealed that there is extensive reprogramming of tRNA modifications in response to cellular stress and during cell cycle progression. Combined with genome-wide codon bias analytics and gene expression studies, a model emerges in which stress-induced reprogramming of tRNA drives the translational regulation of critical response proteins whose transcripts display a distinct codon bias. Termed Modification Tunable Transcripts (MoTTs), we define them as (1) transcripts that use specific degenerate codons and codon biases to encode critical stress response proteins, and (2) transcripts whose translation is influenced by changes in wobble base tRNA modification. In this review we note that the MoTTs translational model is also applicable to the process of stop-codon recoding for selenocysteine incorporation, as stop-codon recoding involves a selective codon bias and modified tRNA to decode selenocysteine during the translation of a key subset of oxidative stress response proteins. Further, we discuss how in addition to RNA modification analytics, the comprehensive characterization of translational regulation of specific transcripts requires a variety of tools, including high coverage codon-reporters, ribosome profiling and linked genomic and proteomic approaches. Together these tools will yield important new insights into the role of translational elongation in cell stress response.National Science Foundation (U.S.) (CHE-1308839)Singapore. National Research Foundation (Singapore-MIT Alliance for Research and Technology Center. Infectious Disease Research Program
    corecore