27 research outputs found

    Smart Cameras with onboard Signcryption for Securing IoT Applications

    Get PDF
    Cameras are expected to become key sensor devices for various internet of things (IoT) applications. Since cameras often capture highly sensitive information, security is a major concern. Our approach towards data security for smart cameras is rooted on protecting the captured images by signcryption based on elliptic curve cryptography (ECC). Signcryption achieves resource-efficiency by performing data signing and encryption in a single step. By running the signcryption on the sensing unit, we can relax some security assumptions for the camera host unit which typically runs a complex software stack. We introduce our system architecture motivated by a typical case study for camera-based IoT applications, evaluate security properties and present performance results of an ARM-based implementatio

    Algorithm based on Booth's Encoding Pattern for Fast Scalar Point Multiplication for ECC in Wireless Sensor Networks

    Get PDF
    With the rapid increase of small devices and its usage, a better suitable security providing mechanism must be incorported keeping the resource constraints of the devices in mind. Elliptic Curve Cryptography (ECC) serves the best and highly suitable for wireless sensor Networks (WSN) in providing security because of its smaller key size and its high strength of security against Elliptic Curve Discrete Logarithm Problem (ECDLP) than any other public-Key Cryptographic Systems. But there is a scope to reduce key calculation time to meet the potential appli- cations, without compromising in level of security in particular for wireless sensor networks. Scalar Multiplication is the costliest operation among the operations in Elliptic Curve Cryptography which takes 80% of key calculation time on WSN motes. This research proposes an algorithm based on Booth's Encoding Pattern, o®ering minimal Hamming Weight and signi¯cantly reduces the computational cost of scalar multiplication. Simulation results has proved that the Booth's en-coded pattern performs better over the existing techniques if there are atleast 46% number of 1's in the key on an average

    Development of an ECDLP based Traceable Blind Signature Scheme and its Application to E-Auction.

    Get PDF
    With the increase in internet users, E-Commerce has been grown exponentially in recent years. E-Auction is one among them. But its security and robustness is still a challenge. The electronic auction centers remain to be insecure and anonymity, bid privacy and other requirements are under the threat by malicious hackers. Any auction protocol must not leak the anonymity and bid privacy of an honest bidder. Keeping these requirements in mind, we have proposed a new electronic auction scheme using blind signature. Moreover our scheme is based upon elliptic curve cryptography which provides similar level of security with comparatively smaller key size. Due to the smaller key size, the space requirement can be reduced which further allows our E-Auction scheme to implement in a mobile application which has a constrained environment like low bandwidth, memory and computational power. Blind signature is a special kind of digital signature where the message privacy can be retained by blinding the message and getting a signature on that. It can be universally verifiable and signer can’t repudiate of signing the document. Moreover it also satisfies the integrity and authenticity of the message. Due to these features of a blind signature, it can easily be applied on an E-Auction scheme. So we have proposed an efficient blind signature protocol according to the requirements of E-Auction which is based upon the hard problem of solving elliptic curve discrete logarithm problem(ECDLP). Then we have successfully applied it in our E-Auction scheme. In this thesis, we developed an Elliptic Curve Discrete Logarithm Problem (ECDLP) based blind signature scheme which can be implemented on our E-Auction protocol. Both the schemes are proved to be resistant to active attacks and satisfies the requirements which are necessary for online auction

    A usability study of elliptic curves

    Get PDF
    In the recent years, the need of information security has rapidly increased due to an enormous growth of data transmission. In this thesis, we study the uses of elliptic curves in the cryptography. We discuss the elliptic curves over finite fields, attempts to attack; discrete logarithm, Pollard’s rho algorithm, baby-step giant-step algorithm, Pohlig-Hellman algorithm, function field sieve, and number field sieve. The main cryptographic reason to use elliptic curves over finite fields is to provide arbitrarily large finite cyclic groups having a computationally difficult discrete logarithm problem

    Partial key exposure attacks on multi-power RSA

    Get PDF
    Tezin basılısı İstanbul Şehir Üniversitesi Kütüphanesi'ndedir.In this thesis, our main focus is a type of cryptanalysis of a variant of RSA, namely multi-power RSA. In multi-power RSA, the modulus is chosen as N = prq, where r ≥ 2. Building on Coppersmith’s method of finding small roots of polynomials, Boneh and Durfee show a very crucial result (a small private exponent attack) for standard RSA. According to this study, N = pq can be factored in polynomial time in log N when d < N 0.292 . In 2014, Sarkar improve the existing small private exponent attacks on multi-power RSA for r ≤ 5. He shows that one can factor N in polynomial time in log N if d < N 0.395 for r = 2 . Extending the ideas in Sarkar’s work, we develop a new partial key exposure attack on multi-power RSA. Prior knowledge of least significant bits (LSBs) of the private exponent d is required to realize this attack. Our result is a generalization of Sarkar’s result, and his result can be seen as a corollary of our result. Our attack has the following properties: the required known part of LSBs becomes smaller in the size of the public exponent e and it works for all exponents e (resp. d) when the exponent d (resp. e) has full-size bit length. For practical validation of our attack, we demonstrate several computer algebra experiments. In the experiments, we use the LLL algorithm and Gröbner basis computation. We achieve to obtain better experimental results than our theoretical result indicates for some cases.Declaration of Authorship ii Abstract iii Öz iv Acknowledgments v List of Figures viii List of Tables ix Abbreviations x 1 Introduction 1 1.1 A Short History of the Partial Key Exposure Attacks . . . . . . . . . . . . 4 1.2 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 The RSA Cryptosystem 8 2.1 RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 RSA Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.3 Multi-power RSA (Takagi’s Variant) . . . . . . . . . . . . . . . . . . . . . 10 2.4 Cryptanalysis of RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4.1 Factoring N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.2 Implementation Attacks . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4.2.1 Side-Channel Analysis . . . . . . . . . . . . . . . . . . . . 12 2.4.2.2 Bleichenbacher’s Attack . . . . . . . . . . . . . . . . . . . 13 2.4.3 Message Recovery Attacks . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.3.1 Håstad’s Attack . . . . . . . . . . . . . . . . . . . . . . . 14 2.4.3.2 Franklin-Reiter Attack . . . . . . . . . . . . . . . . . . . . 15 2.4.3.3 Coppersmith’s Short Pad Attack . . . . . . . . . . . . . . 15 2.4.4 Attacks Using Extra Knowledge on RSA Parameters . . . . . . . . 15 2.4.4.1 Wiener’s Attack . . . . . . . . . . . . . . . . . . . . . . . 16 2.4.4.2 Boneh-Durfee Attack . . . . . . . . . . . . . . . . . . . . 17 3 Preliminaries 18 3.1 Lattice Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.2 Finding Small Roots of Polynomials . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 Finding Small Modular Roots . . . . . . . . . . . . . . . . . . . . . 21 3.2.2 Complexity of the Attacks . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.2.1 Polynomial Reduction . . . . . . . . . . . . . . . . . . . . 25 3.2.2.2 Root Extraction . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.3 Boneh-Durfee Attack . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4 Partial Key Exposure Attacks on Multi-Power RSA 28 4.1 Known Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.1.1 Attacks when ed ≡ 1 mod ( p−1)( q−1) . . . . . . . . . . . . . . . 29 4.1.2 Attacks when ed ≡ 1 mod ( pr −pr−1)( q−1) . . . . . . . . . . . . . 29 4.2 A New Attack with Known LSBs . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5 Conclusion and Discussions 39 Bibliograph

    Cryptographic Pairings: Efficiency and DLP security

    Get PDF
    This thesis studies two important aspects of the use of pairings in cryptography, efficient algorithms and security. Pairings are very useful tools in cryptography, originally used for the cryptanalysis of elliptic curve cryptography, they are now used in key exchange protocols, signature schemes and Identity-based cryptography. This thesis comprises of two parts: Security and Efficient Algorithms. In Part I: Security, the security of pairing-based protocols is considered, with a thorough examination of the Discrete Logarithm Problem (DLP) as it occurs in PBC. Results on the relationship between the two instances of the DLP will be presented along with a discussion about the appropriate selection of parameters to ensure particular security level. In Part II: Efficient Algorithms, some of the computational issues which arise when using pairings in cryptography are addressed. Pairings can be computationally expensive, so the Pairing-Based Cryptography (PBC) research community is constantly striving to find computational improvements for all aspects of protocols using pairings. The improvements given in this section contribute towards more efficient methods for the computation of pairings, and increase the efficiency of operations necessary in some pairing-based protocol

    Proxy Signcrypion Scheme Based on Hyper Elliptic Curves

    Get PDF
    Delegation of rights is promising in Internet applications like distributed computing, e-cash systems, global distribution networks, grid computing, mobile agent applications, and mobile communications. This paper presents a novel Proxy Signcrypion Scheme based on hyper elliptic curves, attractive for resource constrained environment due to its shorter key size. It has properties of warrant integrity, message integrity, message confidentiality, warrant unforgeability, message unforgeability, proxy non repudiation and public verifiability. The proposed scheme has reduced computational cost as compared to the other existing schemes

    Implementação eficiente em software de criptossistemas de curvas elipticas

    Get PDF
    Orientador: Ricardo DahabTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: A criptografia de chave-pública é, reconhecidamente, uma ferramenta muito útil para prover requisitos de segurança tais como confidencialidade, integridade, autenticidade e não-repudio, parte integrante das comunicações. A principal vantagem dos criptossistemas de curvas elípticas (CCE) em relação a outras tecnologias de chave-pública concorrentes tais como RSA e DSA, é que parâmetros significativamente menores podem ser usados nos CCE com o mesmo nível de segurança. Essa vantagem é especialmente importante em aplicações em ambientes computacionais limitados como cartões inteligentes, telefones celulares, computadores de bolso e pagers. De um ponto de vista prático, a implementação dos CCE apresenta vários desafios. Uma aplicação baseada nos CCE precisa que várias escolhas sejam feitas tais como o nível de segurança, algoritmos para implementar a aritmética no corpo finito subjacente, algoritmos para implementar a aritmética na curva elíptica, protocolos de curvas elípticas e a plataforma computacional. Essas escolhas podem ter um grande impacto no desempenho da aplicação resultante. Esta dissertação trata do desenvolvimento de algoritmos eficientes para implementação em software de criptossistemas de curvas elípticas sobre o corpo finito F2m. Neste contexto, foram desenvolvidos métodos eficientes para implementar a aritmética no corpo finito F2m, e para calcular múltiplos de um ponto elíptico, a operação fundamental da criptografia pública baseada em curvas elípticas. Nesta dissertação também foi abordado o problema da implementação eficiente em software dos algoritmos propostos, em diferentes plataformas computacionais tais como PCs, estações de trabalho, e em dispositivos limitados como o pager da RIM.Abstract: It is widely recognized that public-key cryptography is an important tool for providing security services such as confidentiality, data integrity, authentication and non-repudiation, which are requirements present in almost all communications. The main advantage of elliptic curve cryptography (ECC) over competing public-key technologies such as RSA and DSA is that significantly smaller parameters can be used in ECC, but with equivalent levels of security. This advantage is especially important for applications on constrained environments such as smart cards, cell phones, personal device assistants, and pagers. From a practical point of view, the implementation of ECC presents various challenges. An ECC-based application requires that several choices be made including the security level, algorithms for implementing the finite field arithmetic, algorithms for implementing the elliptic group operation, elliptic curve protocols, and the computer platform. These choices may have a significant impact on the performance of the resulting application. This dissertation focuses on developing efficient algorithms for software implementation of ECC over F2m. In this framework, we study different ways of efficiently implementing arithmetic in F2¿, and computing an elliptic scalar multiplication, the central operation of public-key cryptography based on elliptic curves. We also concentrate on the software implementation of these algorithms for different platforms including PCs, workstations, and constrained devices such as the RIM interactive pager. This dissertation is a collection of five papers written in English, with an introduction and conclusions written in Portuguese.DoutoradoDoutor em Ciência da Computaçã
    corecore