318 research outputs found

    Time-Free Solution to SAT Problem by Tissue P Systems

    Get PDF
    Tissue P systems are a class of computing models inspired by intercellular communication, where the rules are used in the nondeterministic maximally parallel manner. As we know, the execution time of each rule is the same in the system. However, the execution time of biochemical reactions is hard to control from a biochemical point of view. In this work, we construct a uniform and efficient solution to the SAT problem with tissue P systems in a time-free way for the first time. With the P systems constructed from the sizes of instances, the execution time of the rules has no influence on the computation results. As a result, we prove that such system is shown to be highly effective for NP-complete problem even in a time-free manner with communication rules of length at most 3

    Communication in membrana Systems with symbol Objects.

    Get PDF
    Esta tesis está dedicada a los sistemas de membranas con objetos-símbolo como marco teórico de los sistemas paralelos y distribuidos de procesamiento de multiconjuntos.Una computación de parada puede aceptar, generar o procesar un número, un vector o una palabra; por tanto el sistema define globalmente (a través de los resultados de todas sus computaciones) un conjunto de números, de vectores, de palabras (es decir, un lenguaje), o bien una función. En esta tesis estudiamos la capacidad de estos sistemas para resolver problemas particulares, así como su potencia computacional. Por ejemplo, las familias de lenguajes definidas por diversas clases de estos sistemas se comparan con las familias clásicas, esto es, lenguajes regulares, independientes del contexto, generados por sistemas 0L tabulados extendidos, generados por gramáticas matriciales sin chequeo de apariciones, recursivamente enumerables, etc. Se prestará especial atención a la comunicación de objetos entre regiones y a las distintas formas de cooperación entre ellos.Se pretende (Sección 3.4) realizar una formalización los sistemas de membranas y construir una herramienta tipo software para la variante que usa cooperación no distribuida, el navegador de configuraciones, es decir, un simulador, en el cual el usuario selecciona la siguiente configuración entre todas las posibles, estando permitido volver hacia atrás. Se considerarán diversos modelos distribuidos. En el modelo de evolución y comunicación (Capítulo 4) separamos las reglas tipo-reescritura y las reglas de transporte (llamadas symport y antiport). Los sistemas de bombeo de protones (proton pumping, Secciones 4.8, 4.9) constituyen una variante de los sistemas de evolución y comunicación con un modo restrictivo de cooperación. Un modelo especial de computación con membranas es el modelo puramente comunicativo, en el cual los objetos traspasan juntos una membrana. Estudiamos la potencia computacional de las sistemas de membranas con symport/antiport de 2 o 3 objetos (Capítulo 5) y la potencia computacional de las sistemas de membranas con alfabeto limitado (Capítulo 6).El determinismo (Secciones 4.7, 5.5, etc.) es una característica especial (restrictiva) de los sistemas computacionales. Se pondrá especial énfasis en analizar si esta restricción reduce o no la potencia computacional de los mismos. Los resultados obtenidos para sistemas de bombeo del protones están transferidos (Sección 7.3) a sistemas con catalizadores bistabiles. Unos ejemplos de aplicación concreta de los sistemas de membranas (Secciones 7.1, 7.2) son la resolución de problemas NP-completos en tiempo polinomial y la resolución de problemas de ordenación.This thesis deals with membrane systems with symbol objects as a theoretical framework of distributed parallel multiset processing systems.A halting computation can accept, generate or process a number, a vector or a word, so the system globally defines (by the results of all its computations) a set of numbers or a set of vectors or a set of words, (i.e., a language), or a function. The ability of these systems to solve particular problems is investigated, as well as their computational power, e.g., the language families defined by different classes of these systems are compared to the classical ones, i.e., regular, context-free, languages generated by extended tabled 0L systems, languages generated by matrix grammars without appearance checking, recursively enumerable languages, etc. Special attention is paid to communication of objects between the regions and to the ways of cooperation between the objects.An attempt to formalize the membrane systems is made (Section 3.4), and a software tool is constructed for the non-distributed cooperative variant, the configuration browser, i.e., a simulator, where the user chooses the next configuration among the possible ones and can go back. Different distributed models are considered. In the evolution-communication model (Chapter 4) rewriting-like rules are separated from transport rules. Proton pumping systems (Sections 4.8, 4.9) are a variant of the evolution-communication systems with a restricted way of cooperation. A special membrane computing model is a purely communicative one: the objects are moved together through a membrane. We study the computational power of membrane systems with symport/antiport of 2 or 3 objects (Chapter 5) and the computational power of membrane systems with a limited alphabet (Chapter 6).Determinism (Sections 4.7, 5.5, etc.) is a special property of computational systems; the question of whether this restriction reduces the computational power is addressed. The results on proton pumping systems can be carried over (Section 7.3) to the systems with bi-stable catalysts. Some particular examples of membrane systems applications are solving NP-complete problems in polynomial time, and solving the sorting problem

    An Approach for Detecting Fault Lines in a Small Current Grounding System using Fuzzy Reasoning Spiking Neural P Systems

    Get PDF
    This paper presents a novel approach for detecting fault lines in a small current grounding system using fuzzy reasoning spiking neural P systems. In this approach, six features of current/voltage signals in a small current grounding system are analyzed by considering transient and steady components, respectively; a fault measure is used to quantify the possibility that a line is faulty; information gain degree is discussed to weight the importance of each of the six features; rough set theory is applied to reduce the features; and finally a fuzzy reasoning spiking neural P system is used to construct fault line detection models. Six cases in a small current grounding system prove the effectiveness of the introduced approach

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first

    Reversible Computation: Extending Horizons of Computing

    Get PDF
    This open access State-of-the-Art Survey presents the main recent scientific outcomes in the area of reversible computation, focusing on those that have emerged during COST Action IC1405 "Reversible Computation - Extending Horizons of Computing", a European research network that operated from May 2015 to April 2019. Reversible computation is a new paradigm that extends the traditional forwards-only mode of computation with the ability to execute in reverse, so that computation can run backwards as easily and naturally as forwards. It aims to deliver novel computing devices and software, and to enhance existing systems by equipping them with reversibility. There are many potential applications of reversible computation, including languages and software tools for reliable and recovery-oriented distributed systems and revolutionary reversible logic gates and circuits, but they can only be realized and have lasting effect if conceptual and firm theoretical foundations are established first
    corecore